BN_refs - AgenaRisk.doc

Document Sample
BN_refs - AgenaRisk.doc Powered By Docstoc
					         Bayesian Net References

                         Version 4

                       13 July 2008


This document contains a list of references to publications and
reports about Bayesian Net technology, and especially Bayesian
Net applications. The report will be regularly updated and we
welcome suggestions for new references to be added. Please send
new references for inclusion to norman@agenarisk.com




                      Agena Limited
                   32-33 Hatton Garden
                    London EC1N 8DL
                           UK
1.    Abdel-Hamid, T. K. (1996). The slippery path to productivity improvement.
      IEEE Software, 13(4), 43-52
2.    Abderrahim, D., L. Bernard, et al. (2006). TIDES - Using Bayesian Networks for
      Student Modeling. Proceedings of the Sixth IEEE International Conference on
      Advanced Learning Technologies, IEEE Computer Society: 1002 - 1007
3.    Abramson, B. (1994). "The design of belief network-based systems for price
      forecasting." Computers & Electrical Engineering 20(2): 163-180
4.    Abramson, B., J. Brown, et al. (1996). "HAILFINDER: A Bayesian system for
      predicting extreme weather." International Journal of Forecasting 7: 57-78
5.    Ackerman, F. and C. Eden (2005). "Using Causal Mapping with Group Support
      Systems to Elicit an Understanding of Failure in Complex Projects: Some
      Implications for Organizational Research." Group Decision and Negotiation 14:
      355–376
6.    Ackermann, F., C. Eden, et al. (1997). "Modeling for Litigation: Mixing
      Qualitative and Quantitative Approaches." Interfaces 27: 48-65
7.    Aires, F., C. Prigent, et al. (2004). "Neural network uncertainty assessment using
      Bayesian statistics: a remote sensing application." Neural Comput 16(11): 2415-
      58
8.    Aitken, C. (1996). "Lies, damned lies and expert witnesses." Mathematics Today
      (Bulletin of the IMA) 32(5/6): 76-80
9.    Aitken, C., F. Taroni, et al. (2003). "A graphical model for the evaluation of
      cross-transfer evidence in DNA profiles." Theoretical Population Biology 63:
      179-190
10.   Aitken, C. G. G. (2004 ). Statistical interpretation of evidence: Bayesian
      analysis, Joseph Bell Centre for Forensic Statistics & Legal Reasoning
        http://www.cfslr.ed.ac.uk/publications/a001.pdf.
11.   Aitken, C. G. G., T. Connolly, et al. (1995). Bayesian belief networks with an
      application in specific case analysis. Computational Learning and Probabilistic
      Reasoning. A. Gammerman, John Wiley and Sons Ltd.
12.   Aitken, C. G. G., T. Connolly, et al. (1996). "Statistical modelling in specific
      case analysis." Science & Justice: 36(4): 245-255
13.   Aktaşa, E., F. Ülengin, et al. (2007). "A decision support system to improve the
      efficiency of resource allocation in healthcare management." Socio-Economic
      Planning Sciences 41(2): 130-146
14.   Aliferis, C. F. and G. F. Cooper (1996). An Evaluation of an Algorithm for
      Inductive Learning of Bayesian Belief Networks Using Simulated Data Sets.
      Section of Medical Informatics & Intelligent Systems Program,University of
      Pittsburg
15.   Aliferis, C. F. and G. F. Cooper (1996). A Structurally and Temporally Extended
      Bayesian Belief Network Model: Definitions, Properties, and Modelling
      Techniques. cons@smi.med.pitt.edu
16.   Alterovitz, G., M. Xiang, et al. (2007). "GO PaD: the Gene Ontology Partition
      Database." Nucleic Acids Res 35(Database issue): 322-7
17.   Alvarez, S. M., B. A. Poelstra, et al. (2006). "Evaluation of a Bayesian decision
      network for diagnosing pyloric stenosis." J Pediatr Surg 41(1): 155-61;
      discussion 155-61
18.   Amasaki, S., O. Mizuno, et al. (2003). A Bayesian Belief Network for Predicting
      Residual Faults in Software Products. Proceedings of 14th International
      Symposium on Software Reliability Engineering (ISSRE2003), November, pp.
      215-22
19.   An, X., D. Jutla, et al. (2006). Privacy intrusion detection using dynamic
      Bayesian networks. Proceedings of the 8th international conference on
      Electronic commerce: The new e-commerce: innovations for conquering current
      barriers, obstacles and limitations to conducting successful business on the
      internet. Fredericton, New Brunswick, Canada, ACM: 208 - 215
20.   Anderson, S. K., K. G. Olesen, et al. (2000). HUGIN - a shell for building
      Bayesian belief universes for expert systems. 11th Intl Joint Conf Artifical
      Intelligence. Detroit: 1080-1085
21.   Andreassen, M. Woldbye, et al. (1987). MUNIN: a causal probabilistic network
      for interpretation of electromyographic findings. 10th International Joint
      Conference on Artificial Intelligence. Milan, Italy: 366-372
22.   Andreassen, S., F. Jensen, et al. (1991). "Medical expert systems based on causal
      probabilistic networks." Int J Biomed Comput 28(1-2): 1-30
23.   Andreassen, S., C. Riekehr, et al. (1999). "Using probabilistic and decision-
      theoretic methods in treatment and prognosis modeling." Artif Intell Med 15(2):
      121-34
24.   Antal, P., G. Fannes, et al. (2003). "Bayesian applications of belief networks and
      multilayer perceptrons for ovarian tumor classification with rejection." Artif
      Intell Med 29(1-2): 39-60
25.   Antal, P., G. Fannes, et al. (2004). "Using literature and data to learn Bayesian
      networks as clinical models of ovarian tumors." Artif Intell Med 30(3): 257-81

26.   Arens, D. A. (1982). "Widowhood and well-being: an examination of sex
      differences within a causal model." Int J Aging Hum Dev 15(1): 27-40
27.   Aronsky, D., M. Fiszman, et al. (2001). "Combining decision support
      methodologies to diagnose pneumonia." Proc AMIA Symp: 12-6
28.   Aronsky, D. and P. J. Haug (1998). "Diagnosing community-acquired
      pneumonia with a Bayesian network." Proc AMIA Symp: 632-6
29.   Aronsky, D. and P. J. Haug (2000). "Automatic identification of patients eligible
      for a pneumonia guideline." Proc AMIA Symp: 12-6
30.   Astakhov, V. and A. Cherkasov (2005). "Prediction of HLA-A2 binding peptides
      using Bayesian network." Bioinformation 1(2): 58-63
31.   Athanasiou, M. and J. Y. Clark (2007). A Bayesian Network Model for the
      Diagnosis of the Caring Procedure for Wheelchair Users with Spinal Injury.
      Twentieth IEEE International Symposium on Computer-Based Medical Systems
      (CBMS'07) 433-438
32.   Bacon, P. J., J. D. Cain, et al. (2002). "Belief network models of land manager
      decisions and land use change." Journal of Environmental Management 65(1): 1-
      23
33.   Bahrami, H. (2006). "Causal models in primary open angle glaucoma."
      Ophthalmic Epidemiol 13(4): 291-8
34.   Bai, C.-G. (2005). "Bayesian network based software reliability prediction with
      an operational profile." J. Syst. Softw. 77(2): 103-112
35.   Bai, C. G., Q. P. Hu, et al. (2005). "Software failure prediction based on a
      Markov Bayesian network model." J. Syst. Softw. 74(3): 275-282
36.   Baker, M. (2000). Diagnostic system utilizing a Bayesian network model having
      link weights updated experimentally. Patent number: 6076083
37.   Bang, J. W. and D. Gillies (2002). Using Bayesian Networks to Model the
      Prognosis of Hepatitis C. In 7th Workshop on Intelligent Data Analysis in
      Medicine and Pharmacology, pages 7.15, Lyon, France
38.   Bang, J. W. and D. Gillies (2002). Using Bayesian Networks with Hidden Nodes
      to Recognise Neural Cell Morphology. In M. Ishizuka and A. Satter, editors, 7th
      Pacific Rim International Conference on Arti_cial Intelligence, pages 385.394,
      Tokyo, New York,. Springer
39.   Bangsø, O. and P. H. Wuillemin (2000). Top-down construction and repetitive
      structures representation in Bayesian networks. Proceedings of The Thirteenth
      International Florida Artificial Intelligence Research Symposium Conference.
      Florida, USA: 282-286
40.   Barahona, P. (1994). "A causal and temporal reasoning model and its use in drug
      therapy applications." Artif Intell Med 6(1): 1-27
41.   Barker, G. C. (2004). Application of Bayesian Belief Network models to food
      safety science
42.   Batchelor, C. and J. Cain (1999). "Application of belief networks to water
      management studies." Agricultural Water Management 40(1): 51-57
43.   Bate, A. (2007). "Bayesian confidence propagation neural network." Drug Saf
      30(7): 623-5
44.   Bate, A., M. Lindquist, et al. (1998). "A Bayesian neural network method for
      adverse drug reaction signal generation." Eur J Clin Pharmacol 54(4): 315-21

45.   Bate, A., M. Lindquist, et al. (2002). "A data mining approach for signal
      detection and analysis." Drug Saf 25(6): 393-7
46.   Bate, A., M. Lindquist, et al. (2002). "Data-mining analyses of
      pharmacovigilance signals in relation to relevant comparison drugs." Eur J Clin
      Pharmacol 58(7): 483-90
47.   Bauer, E., D. Koller, et al. (1997). Update rules for parameter estimation in
      Bayesian networks. In Geiger D. and Shenoy P. (Eds.) Proceedings of the
      Thirteenth Conference on Uncertainty in Artificial Intelligence, Morgan
      Kaufmann Publishers Inc., San Francisco, pp. 3-13
48.   Bayesware. (2007). "Bayesware Knowledge Discovery by Bayesian Networks."
49.   http://www.bayesware.com/.
50.   Beach, B. (1975). "Expert judgment about uncertainty: Bayesian decision
      making in realistic settings." Organ Behav Hum Perform 14(1): 10-59
51.   Bearfield, G. and W. Marsh (2005). Generalising Event Trees Using Bayesian
      Networks with a Case Study of Train Derailment. in Proceedings of the 24th
      International Conference on Computer Safety, Reliability and Security,
      SAFECOMP 2005, Springer-Verlag, vol. 3688
52.   Beghin, I., A. De Muynck, et al. (1989). "Can the causal model approach
      contribute to the study of the epidemiology and the control of sleeping
      sickness?" Ann Soc Belg Med Trop 69 Suppl 1: 31-47; discussion 144
53.   Bellamy, S. L., J. Y. Lin, et al. (2007). "An introduction to causal modeling in
      clinical trials." Clin Trials 4(1): 58-73
54.   Ben Salem, A., A. Muller, et al. (2006). "Dynamic Bayesian Networks in system
      reliability analysis in 6th IFAC Symposium on Fault Detection, Supervision and
      Safety of technical processes." 6th IFAC Symposium on Fault Detection,
      Supervision and Safety of technical processes, China [hal-00092032 - version 1]
      (2006-09-08"
55.   Bernardo, J. A. and A. F. Smith (1994). Bayesian Theory, John Wiley and Sons,
      New York.
56.   Bibi, S. and I. Stamelos (2004). Software Process Modeling with Bayesian
      Belief Networks. 10th International Software Metrics Symposium (Metrics
      2004). Chicago, USA
57.   Biedermann, A., F. Taroni, et al. (2005). "The evaluation of evidence in the
      forensic investigation of fire incidents. Part II. Practical examples of the use of
      Bayesian networks." Forensic Science International 147(1): 59-69
58.   Birckmayer, J. D., H. D. Holder, et al. (2004). "A general causal model to guide
      alcohol, tobacco, and illicit drug prevention: assessing the research evidence." J
      Drug Educ 34(2): 121-53
59.   Blackburn, J. D., G. D. Scudder, et al. (1996). Improving speed and productivity
      of software development: a global survey of software developers. IEEE
      Transactions on Software Engineering, 22(12), 875-885
60.   Blanco, R., I. Inza, et al. (2005). "Feature selection in Bayesian classifiers for the
      prognosis of survival of cirrhotic patients treated with TIPS." J Biomed Inform
      38(5): 376-88
61.   Bobbio, A., L. Portinale, et al. (2001). "Improving the analysis of dependable
      systems by mapping fault trees into Bayesian networks." Reliability Engineering
      and System Safety 71(3): 249-260
62.   Bockhorst, J., M. Craven, et al. (2003). "A Bayesian network approach to operon
      prediction." Bioinformatics 19(10): 1227-35
63.   Boer, R., S. Plevritis, et al. (2004). "Diversity of model approaches for breast
      cancer screening: a review of model assumptions by the Cancer Intervention and
      Surveillance Network (CISNET) Breast Cancer Groups." Stat Methods Med Res
      13(6): 525-38
64.   Borsuk, M. E., C. A. Stow, et al. (2004). "A Bayesian network of eutrophication
      models for synthesis, prediction, and uncertainty analysis." Ecological Modelling
      173(2-3): 219-39
65.   Bothtner, U., S. E. Milne, et al. (2002). "Bayesian probabilistic network
      modeling of remifentanil and propofol interaction on wakeup time after closed-
      loop controlled anesthesia." J Clin Monit Comput 17(1): 31-6
66.   Bottcher, P., R. Stoddard, et al. (1995). A Bayesian approach for modeling
      quality in software products and processes. Proc 5th Int Conf Software Quality,
      214-253
67.   Bouckaert, R. R. (1996). A Stratified Simulation Scheme for Inference in
      Bayesian Belief Networks. Utrecht University, Department of Computer
      Science, P.O.Box 80.089 3508 TB Utrecht, The Netherlands, email:
      remco@cs.ruu.nl
68.   Boudali, H. and J. B. Dugan (2005). "A discrete-time Bayesian network
      reliability modeling and analysis framework." Reliability Engineering and
      System Safety 87(3): 337-349
69.   Boudali, H. and J. B. Dugan (2006). "A Continuous-Time Bayesian Network
      Reliability Modeling and Analysis framework." IEEE Transactions on
      Reliability 55: 86-97
70.   Bouissou, M., F. Martin, et al. (1999). "Assessment of a Safety-Critical System
      Including Software: A Bayesian Belief Network for Evidence Sources." "Free.
      Ann. Reliability and Maintainability Symp., RAMS"
71.   Boutilier, C., N. Friedman, et al. (1996). "Context-specific independence in
      Bayesian networks." "In Proc. 12th UAI, pages 115-123"
72.   Bradford, J., C. Needham, et al. (2006). "Insights into protein-protein interfaces
      using a Bayesian network prediction method." J Mol Biol 362(2): 365-86
73.   Brage, D. and W. Meredith (1994). "A causal model of adolescent depression." J
      Psychol 128(4): 455-68
74.   Brewer, M. J. (2003). "Discretisation for inference on Bayesian mixture
      models." "Statistics and Computing 13, 209-219"
75.   Brown, L. E., I. Tsamardinos, et al. (2004). "A novel algorithm for scalable and
      accurate Bayesian network learning." Medinfo 11(Pt 1): 711-5
76.   Bryan, B. and M. Garrod (2006). Combining rapid field assessment with a
      Bayesian network to prioritise investment in watercourse protection, CSIRO
      Land and Water Science Report 10/06, April,
      www.clw.csiro.au/publications/science/2006/sr10-06.pd
77.   Bulashevska, S., O. Szakacs, et al. (2004). "Pathways of urothelial cancer
      progression suggested by Bayesian network analysis of allelotyping data." Int J
      Cancer 110(6): 850-6
78.   Burden, F. R. and D. A. Winkler (2005). "Predictive Bayesian neural network
      models of MHC class II peptide binding." J Mol Graph Model 23(6): 481-9
79.   Burge, J., T. Lane, et al. (2007). "Discrete dynamic Bayesian network analysis of
      fMRI data." Hum Brain Mapp
80.   Burnside, E., D. Rubin, et al. (2006). "Bayesian network to predict breast cancer
      risk of mammographic microcalcifications and reduce number of benign biopsy
      results: initial experience." Radiology 240(3): 666-73
81.   Burnside, E., D. Rubin, et al. (2000). "A Bayesian network for mammography."
      Proc AMIA Symp: 106-10
82.   Burnside, E., D. Rubin, et al. (2004). "Using a Bayesian network to predict the
      probability and type of breast cancer represented by microcalcifications on
      mammography." Medinfo 11(Pt 1): 13-7
83.   Burnside, E. S. (2005). "Bayesian networks: computer-assisted diagnosis support
      in radiology." Acad Radiol 12(4): 422-30
84.   Burnside, E. S., D. L. Rubin, et al. (2006). "Bayesian network to predict breast
      cancer risk of mammographic microcalcifications and reduce number of benign
      biopsy results: initial experience." Radiology 240(3): 666-73
85.   Burnside, E. S., D. L. Rubin, et al. (2004). "Using a Bayesian network to predict
      the probability and type of breast cancer represented by microcalcifications on
      mammography." Medinfo 11(Pt 1): 13-7
86.   Burnside, E. S., D. L. Rubin, et al. (2004). "A probabilistic expert system that
      provides automated mammographic-histologic correlation: initial experience."
      AJR Am J Roentgenol 182(2): 481-8
87.   Buxton, H. (1997). "Advanced visual surveillance using Bayesian networks."
      "COLLOQUIUM DIGEST- IEE, , ISSUE 74, pages"
88.   Call, C. and P. Gonsalves (2006). Belief Network-based Situation Assessment
      for Air Operations Centers. Proceedings of SPIE Defense & Security, Orlando,
      FL.
89.   Campos, L. M. d., J. A. Gámez, et al. (2001). "Accelerating chromosome
      evaluation for partial abductive inference in Bayesian networks by means of
      explanation set absorption." International Journal of Approximate Reasoning,
      27(2): 121-142
90.   Canol, R., C. Sordo, et al. (2004). Applications of Bayesian Networks in
      Meteorology. Advances in Bayesian Networks. Gamez, Springer: 309-327.
91.   Card, D. (1998). Learning from our mistakes with defect causal analysis. IEEE
      Software, 15(1), 56-63
92.   Castillo, E., J. M. Gutierrez, et al. (1997). Sensitivity analysis in discrete
      Bayesian networks. IEEE Transactions on Systems, Man and Cybernetics, Part
      A, Volume: 27, Issue: 4 , July, 412 - 423
93.   Chakraborty, S., M. Ghosh, et al. (2005). "Bayesian neural networks for
      bivariate binary data: an application to prostate cancer study." Stat Med 24(23):
      3645-62
94.   Chan, H. and A. Darwiche (2005). "On the Revision of Probabilistic Beliefs
      Using Uncertain Evidence." Artificial Intelligence 163(67-90)
95.   Chang, J., K. Hwang, et al. (2005). "Bayesian network learning with feature
      abstraction for gene-drug dependency analysis." J Bioinform Comput Biol 3(1):
      61-77
96.   Chang, K. C. and Fung (1997). "Target identification with Bayesian networks in
      a multiple hypothesis tracking system." OPT. Eng 36(3): 684-691
97.    Charniak, E. (1991). "Bayesian Networks without tears." AI Magazine, AAAI
       Winter: 50-6
98.    Chavira, M. and A. Darwiche (2007). Compiling Bayesian Networks Using
       Variable Elimination. 20th International Joint Conference on Artificial
       Intelligence (IJCAI). Hyderabad, India
99.    Chavira, M., A. Darwiche, et al. (2006). "Compiling Relational Bayesian
       Networks for Exact Inference." International Journal of Approximate Reasoning
       (IJAR) 42: 4-20
100.   Chen, R. and E. H. Herskovits (2007). "Clinical diagnosis based on bayesian
       classification of functional magnetic-resonance data." Neuroinformatics 5(3):
       178-88
101.   Chen, X., M. Chen, et al. (2006). "BNArray: an R package for constructing gene
       regulatory networks from microarray data by using Bayesian network."
       Bioinformatics 22(23): 2952-4
102.   Cheng, J. (2001). Belief Network Powersoft System, University of Alberta,
       http://www.cs.ualberta.ca/~jcheng/bnsoft.ht
103.   Cheng, J., D. A. Bell, et al. (1997). "An Algorithm for Bayesian Belief Network
       Construction from Data." http://www.cs.ualberta.ca/~jcheng/Doc/aistat97.pdf.

104.   Cheng, P. W. and L. R. Novick (1990). "A probabilistic contrast model of causal
       induction." J Pers Soc Psychol 58(4): 545-67
105.   Chickering, D. M. (1996). Learning Bayesian Networks is NP-Complete.
       LECTURE NOTES IN STATISTICS SPRINGER VERLAG. 112: 121-130.
106.   Chickering, D. M. and D. Heckerman (1997). ".Efficient, Approximations for
       the Marginal Likelihood of Bayesian Networks with Hidden Variables."
       MACHINE LEARNING 29(2/3): 181-212
107.   Chien, C.-F., S.-L. Chen, et al. "Using Bayesian network for fault location on
       distribution feeder." IEEE Trans Power Delivery 17(13): 785- 793
108.   Chulani, S., B. Boehm, et al. (1998). Calibrating Software Cost Models Using
       Bayesian Analysis. USC-CSE 1998
109.   Chulani, S., B. Boehm, et al. (1999). Bayesian analysis of empirical software
       engineering cost models. IEEE Transactions on Software Engineering, 25(4),
       573-583
110.   Chung, L., A. W. Pan, et al. (2003). "A causal model of rehabilitation resource
       use for subjects with spinal cord injury in Taiwan." J Rehabil Med 35(5): 208-12

111.   Clarke, S. R., M. Bailey, et al. (2008). "Successful applications of statistical
       modeling to betting markets." Mathematics Today (Bulletin of the IMA) 44(1):
       38-44
112.   Cobb, B. and P. Shenoy (2005). "On the plausibility transformation method for
       translating belief function models to probability models." Int J Approx Reason
       41(3): 314-40
113.   Cofi˜no, A. S., R. Cano, et al. (2002). Bayesian networks for probabilistic
       weather prediction. Proceedings of the 15th European Conference on Artificial
       Intelligence: 695-700
114.   Coolen, F. P., M. Goldstein, et al. (2007). "Using Bayesian statistics to support
       testing of software." Journal of Risk and Reliability 221(1): 85-93
115.   Cooper, G. F. and E. Herskovits (1992). A Bayesian Method for the Induction of
       Probabilistic Networks from Data. Machine Learning, 9, Page 309
116.   Cooper, N., A. Sutton, et al. (2002). "Decision analytical economic modelling
       within a Bayesian framework: application to prophylactic antibiotics use for
       caesarean section." Stat Methods Med Res 11(6): 491-512
117.   Cooper., G. F. (1990). "The computational complexity of probabilistic inference
       using bayesian belief networks ." Artificial Intelligence 42(2-3): 393-405
118.   Coulter, D. M., A. Bate, et al. (2001). "Antipsychotic drugs and heart muscle
       disorder in international pharmacovigilance: data mining study." BMJ
       322(7296): 1207-9
119.   Coupe, V. M., N. Peek, et al. (1999). "Using sensitivity analysis for efficient
       quantification of a belief network." Artif Intell Med 17(3): 223-47
120.   Courtois, P. J., N. E. Fenton, et al. (1998). Examination of bayesian belief
       network for safety assessment of nuclear computer-based systems, City
       University, Centre for Software Reliability
121.   Cowell, R., S. Lauritzen, et al. (2006). "Identification and separation of DNA
       mixtures using peak area information." Forensic Science International 166(1):
       28-34
122.   Cowell, R. G. (2003). "Finex: a Probabilistic Expert System for forensic
       identification." Forensic Science International 134(2): 196-206
123.   Cowell, R. G., A. P. Dawid, et al. (1991). "A Bayesian expert system for the
       analysis of an adverse drug reaction." Artificial Intelligence in Medicine 3: 257-
       270
124.   Cowell, R. G., A. P. Dawid, et al. (1999). Probabilistic Networks and Expert
       Systems. New York, Springer
125.   Cowell, R. G., A. P. Dawid, et al. (1993). "Sequential Model Criticism in
       Probabilistic Expert Systems." IEEE Transactions on Pattern Analysis and
       Machine Intelligence 15(3): 209-219
126.   Cox, Z. and J. Pfautz (2007). Causal Influence Models: A Method for
       Simplifying Construction of Bayesian Networks (Rep. No. R-BN07-01).
       Cambridge, MA: Charles River Analytics Inc
127.   Croft, J. and J. Q. Smith (2003). "Discrete mixtures in simple Bayesian
       Networks with hidden variables." J of Computational Statistics and Data
       Analysis 41(3-4): 539-547
128.   Cruz-Ramirez, N., H. G. Acosta-Mesa, et al. (2007). "Diagnosis of breast cancer
       using Bayesian networks: A case study." Comput Biol Med 37(11): 1553-64
129.   D’Ambrosio, B. (1999). "Inference in Bayesian Networks." AI Magazine, AAAI
       20(2): 21-36
130.   Dagum, P. and R. M. Chavez (1993). Approximating Probabilistic Inference in
       Bayesian Belief Networks. Pattern Analysis and Machine Intelligence 15(3):246-
       255
131.   Dagum, P. and A. Galper (1995). "Time series prediction using belief network
       models." International Journal of Human-Computer Studies 42(6): 617-632
132.   Dahll, G. (2000). "Combining disparate sources of information in the safety
       assessment of software-based systems." Nuclear Engineering and Design 195(3):
       307-319
133.   Dahll, G. and B. A. Gran (2000). The use of Bayesian belief nets in safety
       assessment of software based systems. OECD Halden Reactor Project, PO Box
       173, N-1751 Halden, Norway
134.   Dai, C. and J. Liu (2005). "Inducing Pairwise Gene Interactions from Time-
       Series Data by EDA Based Bayesian Network." Conf Proc IEEE Eng Med Biol
       Soc 7: 7746-9
135.   Darwiche, A. Constant-Space Reasoning in Dynamic Bayesian Networks
        http://citeseer.ist.psu.edu/489080.html.
136.   Darwiche, A. (2003). "Differential Approach to Inference in Bayesian
       Networks." Journal of the ACM 50(3): 280-305
137.   Das, B. (2004). "Generating Conditional Probabilities for Bayesian Networks:
       Easing the Knowledge Acquisition Problem. http://www.arxiv.org [On-line].
       Available: http://www.citebase.org/cgi-
       bin/citations?id=oai:arXiv.org:cs/0411034."
138.   Dawid, A. P. (2003). An object-oriented Bayesian network for estimating
       mutation rates. Ninth International Workshop on Artificial Intelligence and
       Statistics, ISBN 0-9727358-0-1. C. M. Bishop and B. J. Frey. Key West, Florida
         http://tinyurl.com/39bmh.
139.   Dawid, A. P., J. Mortera, et al. (2006). Representing and solving complex DNA
       identification cases using Bayesian networks. Progress in Forensic Genetics 11
       (Proceedings of the 21st International ISFG Congress). A. Amorim, F. Corte-
       Real and N. Morling. Ponta Delgada, The Azores, Portugal International
       Congress Series, Elsevier Science, Amsterdam. 1288: 484-91
140.   Dawid, A. P., J. Mortera, et al. (2007). "Object-oriented Bayesian networks for
       complex forensic DNA profiling problems." Forensic Science International 169:
       195-205
141.   de Campos, L. M. (2006). "A Scoring Function for Learning Bayesian Networks
       based on Mutual Information and Conditional Independence Tests." J. Mach.
       Learn. Res. 7: 2149-2187
142.   de Campos, L. M. (2006). "A Scoring Function for Learning Bayesian Networks
       based on Mutual Information and Conditional Independence Tests." J. Mach.
       Learn. Res. 7: 2149-2187
143.   de Melo, A. C. V. and A. J. Sanchez (2008). "Software maintenance project
       delays prediction using Bayesian Networks." Expert Syst. Appl. 34(2): 908-919
         http://dx.doi.org/10.1016/j.eswa.2006.10.040.
144.   De Santa Olalla, F. J. M., Dominguez A, et al. (2005). "Integrated Water
       Resources Management of the Hydrogeological Unit "Eastern Mancha" Using
       Bayesian Belief Networks." Agricultural Water Management 77(1-3): 21-36
145.   de Santana, A. L., C. R. Frances, et al. (2007). "Strategies for improving the
       modeling and interpretability of Bayesian networks." Data Knowl. Eng. 63(1):
       91-107
146.   Deforche, K., R. Camacho, et al. (2007). "Bayesian network analysis of
       resistance pathways against HIV-1 protease inhibitors." Infect Genet Evol 7(3):
       382-90
147.   Delic, K. A., F. Mazzanti, et al. (1997). Formalising a software safety case via
       belief networks. Proc DCCA-6, 6th IFIP International Working Conf on
       Dependable Computing for critical Appliations, Garmisch-Partenkirchen,
       Germany, March
148.   Dembo, R., D. Farrow, et al. (1979). "Testing a causal model of environmental
       influences on the early drug involvement of inner city junior high school
       youths." Am J Drug Alcohol Abuse 6(3): 313-36
149.   Deng, X., H. Geng, et al. (2006). "Joint learning of gene functions--a Bayesian
       network model approach." J Bioinform Comput Biol 4(2): 217-39
150.   Dexheimer, J. W., L. E. Brown, et al. (2007). "Comparing decision support
       methodologies for identifying asthma exacerbations." Stud Health Technol
       Inform 129: 880-4
151.   Dey, S. and J. A. Stori (2005). "A Bayesian network approach to root cause
       diagnosis of process variations." International Journal of Machine Tools and
       Manufacture 45(1): 75-91
152.   Diamond, L., V. Mishka, et al. (1995). "Are normative expert systems
       appropriate for diagnostic pathology?" J Am Med Inform Assoc 2(2): 85-93
153.   Díez, F. J. (1993). Parameter adjustment in Bayes networks: the gener-alized
       noisy or-gate. Ninth Conference on Uncertainty in Artificial Intelligence. D.
       Heckerman and A. Mamdani. Washington D.C: 99-105
154.   Diez, F. J., J. Mira, et al. (1997). "DIAVAL, a Bayesian expert system for
       echocardiography." Artif Intell Med 10(1): 59-73
155.   Dockstader, S. L. and A. M. Tekalp (2001). "Multiple camera tracking of
       interacting and occluded human motion." Proceedings of the IEEE 89(10): 1441-
       1455
156.   Donaghy, R. and A. H. Marshall (2005). Modelling the Health of ARMD
       Patients Eyes Using a Dynamic Bayesian Network. Conference on Applied
       Statistics. Ireland, Enniskillen: 98-99
157.   Downe-Wamboldt, B. L. and P. M. Melanson (1998). "A causal model of coping
       and well-being in elderly people with arthritis." J Adv Nurs 27(6): 1109-16
158.   Dray, P., G. J. Bearfield, et al. (2007). Constructing Scalable and Parameterised
       System Wide Risk Models. 25th International System Safety Conference.
       Baltimore, USA, System Safety Society
159.   Druzdzel, M. J. and H. van Leijen (2001). "Causal reversibility in Bayesian
       networks." Journal of Experimental and Theoretical Artificial Intelligence 13(1):
       45-62
160.   Druzdzel, M. K. and L. C. van der Gaag (2000). "Building Probabilistic
       Networks: Where Do the Numbers Come From?" IEEE Transactions on
       Knowledge and Data Engineering 12(4): 481-486
161.   Druzdzel, M. K. and L. C. vanderGaag (1995). Elicitation of probabilities for
       belief networks: combining qualitative and quantitiative information. Proc 11th
       Ann Conf on Uncertainty in Artifical Intelligence (UAI-95), 141-148, Montreal,
       Quebec, Canada, August
162.   Eaton, D. and K. Murphy (2007). "Exact Bayesian structure learning from
       uncertain interventions." AI & Statistics
163.   Edwards, D. (2000). Introduction to Graphical Modelling, Springer-Verlag.
164.   Edwards, W. (1991). "Influence Diagrams, Bayesian Imperialism, and the
       Collins case: an appeal to reason." Cardozo Law Review 13: 1025-1079
165.   Eleye-Datubo, A., A. Wall, et al. (2006). "Enabling a powerful marine and
       offshore decision-support solution through Bayesian network technique." Risk
       Anal 26(3): 695-721
166.   Elish, M. O., D. C. Rine, et al. (2002). "Evaluating collaborative software in
       supporting organizational learning with Bayesian Networks." SAC '02:
       Proceedings of the 2002 ACM symposium on Applied computing: 992-996
         http://doi.acm.org/10.1145/508791.508984.
167.   Elloy, D. F., W. Terpening, et al. (2001). "A causal model of burnout among
       self-managed work team members." J Psychol 135(3): 321-34
168.   Embrey, D. E. (1992). Incorporating management and organisational factors into
       probabilistic safety assessment. Reliability Engineering and System Safety, 38,
       199-208
169.   Erb, R. J. (1995). "The backpropagation neural network--a Bayesian classifier.
       Introduction and applicability to pharmacokinetics." Clin Pharmacokinet 29(2):
       69-79
170.   Evett, I. W., P. D. Gill, et al. (2002). "Interpreting small quantities of DNA: the
       hierarchy of propositions and the use of Bayesian networks." Journal of Forensic
       Sciences 47(3): 520-530
171.   Ezawa, K., M. Singh, et al. (1996). Learning Goal-Oriented Bayesian Networks
       for Telecommunications Risk Management. 13th International Conference on
       Machine Learning. Bari, Italy: 139-147
172.   Faigman, D. L. and A. J. Baglioni (1988). "Bayes' theorem in the trial process."
       Law and Human Behavior 12(1): 1-17 http://dx.doi.org/10.1007/BF01064271.
173.   Falzon, L. (2005). "Using Bayesian network analysis to support centre of gravity
       analysis in military planning." European Journal of Operational Research 170
       (2): 629-643
174.   Fan, C.-F. and Y.-C. Yu (2004). "BBN-based software project risk
       management." J Systems Software 73 (2): 193-203
175.   Federal Drugs Agency (2006 ). Guidance for the Use of Bayesian Statistics in
       Medical Device Clinical Trials - Draft Guidance for Industry and FDA Staff,
       U.S. Department of Health and Human Services, Food and Drug Administration
       http://www.fda.gov/cdrh/osb/guidance/1601.html
176.   Feelders, A. J. and L. C. v. d. Gaag (2006). "Learning Bayesian network
       parameters under order constraints." International Journal of Approximate
       Reasoning (IJAR) 42: 37-53
177.   Feelders, A. J. and J. Ivanovs (2006). Discriminative Scoring of Bayesian
       Network Classifiers: a Comparative Study. Third European workshop on
       probabilistic graphical models (PGM'06) M. Studen'y and J. Vomlel: 75-82
178.   Fenton, N. E. (2003). SCULLY: Scaling up Bayesian Nets for Software Risk
       Assessment. EPSRC Project GR/N00258 Final Report. Queen Mary University
       of London, EPSRC
         http://www.dcs.qmul.ac.uk/research/radar/Projects/scully/SCULLY%20Project
       %20Final%20Report.pdf.
179.   Fenton, N. E., B. Littlewood, et al. (1998). "Assessing dependability of safety
       critical systems using diverse evidence." IEE Proceedings Software 145(1): 35-
       39
180.   Fenton, N. E., D. W. R. Marsh, et al. (1999). SERENE (SafEty and Risk
       Evaluation using bayesian Nets): Method Manual
        https://www.dcs.qmul.ac.uk/~norman/papers/serene.pdf.
181.   Fenton, N. E., W. Marsh, et al. (2004). Making Resource Decisions for Software
       Projects. 26th International Conference on Software Engineering (ICSE2004)
       Edinburgh, United Kingdom, IEEE Computer Society: 397-406
182.   Fenton, N. E. and M. Neil (1999). "A critique of software defect prediction
       models." Software Engineering, IEEE Transactions on 25(5): 675-689
183.   Fenton, N. E. and M. Neil (1999). "Software metrics: successes, failures and new
       directions." Journal of Systems and Software 47(2-3): 149-157
184.   Fenton, N. E. and M. Neil (2000). "Bayesian belief nets: a causal model for
       predicting defect rates and resource requirements." Software Testing and Quality
       Engineering 2(1): 48-53
185.   Fenton, N. E. and M. Neil (2000). "The Jury Fallacy and the use of Bayesian
       nets to simplify probabilistic legal arguments." Mathematics Today (Bulletin of
       the IMA) 36(6): 180-187
186.   Fenton, N. E. and M. Neil (2001). "Making Decisions: Using Bayesian Nets and
       MCDA." Knowledge-Based Systems 14: 307-325
187.   Fenton, N. E. and M. Neil (2007). Managing Risk in the Modern World:
       Bayesian Networks and the Applications, London Mathematical Society,
       Knowledge Transfer Report. 1
         http://www.lms.ac.uk/activities/comp_sci_com/KTR/apps_bayesian_networks.
       pdf.
188.   Fenton, N. E., M. Neil, et al. (2007). "Using Ranked nodes to model qualitative
       judgements in Bayesian Networks." IEEE Transactions on Knowledge and Data
       Engineering 19(10): 1420-1432
189.   Fenton, N. E., M. Neil, et al. (2002). "Software Measurement: Uncertainty and
       Causal Modelling." IEEE Software 10(4): 116-122
190.   Fenton, N. E., M. Neil, et al. (2008). "Using Bayesian Networks to Predict
       Software Defects and Reliability." Proceedings of the Institution of Mechanical
       Engineers, Part O, Journal of Risk and Reliability to appear
191.   Fenton, N. E., M. Neil, et al. (2007). "Predicting software defects in varying
       development lifecycles using Bayesian nets." Information & Software
       Technology 49: 32-43
192.   Fenton, N. E., L. Radlinski, et al. (2006). Improved Bayesian Networks for
       Software Project Risk Assessment Using Dynamic Discretisation. Software
       Engineering Techniques: Design for Quality (Prceedings of Software
       Engineering Techniques 2006, Warsaw, Poland, 17-20 Oct 2006). K. Sacha,
       Springer, Boston. 227: 139-148.
193.   Ferat, S., Y. M Cetin, et al. (2007). "Fault diagnosis for airplane engines using
       Bayesian networks and distributed particle swarm optimization." Parallel
       Comput. 33(2): 124-143
194.   Fernández, A. and A. Salmerón (2008). "BayesChess: A computer chess
       program based on Bayesian networks." Pattern Recognition Letters 29 (8): 1154-
       1159
195.   Fine, S. and A. Ziv (2003). Coverage Directed Test Generation for Functional
       Verification using Bayesian Networks. 40th Design Automation Conference:
       286-291
196.   Fine, S. and A. Ziv (2004). On the application of Bayesian Networks for
       simulation-based verification. 2nd Bayesian Modelling Applications Workshops
       of Uncertainty in AI, Banff, Canada
197.   Fischer, E. A., J. Y. Lo, et al. (2004). "Bayesian networks of BI-RADStrade
       mark descriptors for breast lesion classification." Conf Proc IEEE Eng Med Biol
       Soc 4: 3031-4
198.   Foreman, L. A., C. Champod, et al. (2003). "Interpreting DNA Evidence: A
       Review." Internat. Statist. Rev. 71(3): 473-495
199.   Forshed, J., F. O. Andersson, et al. (2002). "NMR and Bayesian regularized
       neural network regression for impurity determination of 4-aminophenol." J
       Pharm Biomed Anal 29(3): 495-505
200.   Freedman, D. A. (2004). "Graphical models for causation, and the identification
       problem." Eval Rev 28(4): 267-93
201.   Friedman, N. and M. Goldszmidt (1998). Learning Bayesian Network from
       Data. SRI International.
       http://www.erg.sri.com/people/moises/tutorial/index.htm
202.   Fu, L. D. and I. Tsamardinos (2005). "A comparison of Bayesian network
       learning algorithms from continuous data." AMIA Annu Symp Proc: 960
203.   Fugelsang, J. A. and V. A. Thompson (2003). "A dual-process model of belief
       and evidence interactions in causal reasoning." Mem Cognit 31(5): 800-15
204.   Fung, R. and B. Del Favero (1995). "Applying Bayesian Networks to
       Information Retrieval." Communications of the ACM 38(3): 42-48
205.   Galliers, J., A. Sutcliffe, et al. (1999). A causal model of human error for safety-
       critical user interface design. City University, CHCID
206.   Garbolino, P. and F. Taroni (2002). "Evaluation of scientific evidence using
       Bayesian networks." Forensic Sci. Int. 125 149-155
207.   Garc, P., A. Amandi, et al. (2007). "Evaluating Bayesian networks' precision for
       detecting students' learning styles." Comput. Educ. 49(3): 794-808
208.   Geiger, D. and D. Heckerman (1996). "Knowledge representation and inference
       in similarity networks and Bayesian multinets." Artifical Intelligence J 82((1-2)):
       45-74
209.   Gevaert, O., F. De Smet, et al. (2006). "Predicting the outcome of pregnancies of
       unknown location: Bayesian networks with expert prior information compared to
       logistic regression." Human Reproduction 21(7): 1824-1831
210.   Gevaert, O., F. De Smet, et al. (2006). "Predicting the prognosis of breast cancer
       by integrating clinical and microarray data with Bayesian networks."
       Bioinformatics 22(14): e184-90
211.   Ghabayen, S. M. S., M. McKee, et al. (2006). "Ionic and isotopic ratios for
       identification of salinity sources and missing data in the Gaza aquifer." Journal
       of Hydrology 318(1-4): 360-373
212.   Gilthorpe, M., I. Maddick, et al. (2000). "Introduction to Bayesian modelling in
       dental research." Community Dent Health 17(4): 218-21
213.   Gjerdingen, D. K., D. G. Froberg, et al. (1990). "A causal model describing the
       relationship of women's postpartum health to social support, length of leave, and
       complications of childbirth." Women Health 16(2): 71-87
214.   Glymour, C. (2001). The Mind's Arrows: Bayes Nets and Graphical Causal
       Models in Psychology. Cambridge, MA: , The MIT Press.
215.   Golightly, A. and D. J. Wilkinson (2006). "Bayesian sequential inference for
       stochastic kinetic biochemical network models." J Comput Biol 13(3): 838-51

216.   Gong, S., J. Ng, et al. (2002). "On the semantics of visual behaviour, structured
       events and trajectories of human action." Image and Vision Computing 20(12):
       873-888
217.   Goubanova, O. and S. King (2008). "Bayesian networks for phone duration
       prediction." Speech Commun. 50(4): 301-311
218.   Gran, B. A. (2002). "Assessment of programmable systems using Bayesian
       belief nets
219.   " Safety Science 40(9): 797-812
220.   Gras, J.-J. (2004). "End-to-End Defect Modeling." IEEE Software 21(5): 98-100
        http://doi.ieeecomputersociety.org/10.1109/MS.2004.1331312.
221.   Green, N. (2005). "A Bayesian network coding scheme for annotating
       biomedical information presented to genetic counseling clients." J Biomed
       Inform 38(2): 130-44
222.   Greenland, S. (1990). "Randomization, statistics, and causal inference."
       Epidemiology 1(6): 421-9
223.   Greenland, S. and B. Brumback (2002). "An overview of relations among causal
       modelling methods." Int J Epidemiol 31(5): 1030-7
224.   Greenland, S. and H. Morgenstern (2001). "Confounding in health research."
       Annu Rev Public Health 22: 189-212
225.   Greenland, S., J. Pearl, et al. (1999). "Causal diagrams for epidemiologic
       research." Epidemiology 10(1): 37-48
226.   Gregoriades, A. and A. Sutcliffe (2005). "Scenario-based assessment of
       nonfunctional requirements." Software Engineering, IEEE Transactions on
       31(5): 392-409
227.   Griffin, H. C., C. L. Fitch, et al. (2004). "The causal pathway model and cerebral
       palsy." Neonatal Netw 23(6): 43-7
228.   Haddawy, P., J. Jacobson, et al. (1997). "BANTER: a Bayesian network tutoring
       shell." Artif Intell Med 10(2): 177-200
229.   Haddawy, P., C. E. Kahn, Jr., et al. (1994). "A Bayesian network model for
       radiological diagnosis and procedure selection: work-up of suspected gallbladder
       disease." Med Phys 21(7): 1185-92
230.   Hajmeer, M. N. and I. A. Basheer (2003). "A hybrid Bayesian-neural network
       approach for probabilistic modeling of bacterial growth/no-growth interface." Int
       J Food Microbiol 82(3): 233-43
231.   Hall, J. A., M. A. Milburn, et al. (1993). "A causal model of health status and
       satisfaction with medical care." Med Care 31(1): 84-94
232.   Halliwell, J., J. Keppens, et al. (2003). "Linguistic Bayesian Networks for
       reasoning with subjective probabilities in forensic statistics." ICAIL '03:
       Proceedings of the 9th international conference on Artificial intelligence and
       law: 42-50
233.   Hamilton, P. W., N. Anderson, et al. (1994). "Expert system support using
       Bayesian belief networks in the diagnosis of fine needle aspiration biopsy
       specimens of the breast." J Clin Pathol 47(4): 329-36
234.   Hansen, C. P. (1989). "A causal model of the relationship among accidents,
       biodata, personality, and cognitive factors." J Appl Psychol 74(1): 81-90
235.   Hatsch, D., C. Keyser, et al. (2007). "Resolving paternity relationships using X-
       chromosome STRs and Bayesian networks." J Forensic Sci 52(4): 895-7
236.   Hearty, P., N. Fenton, et al. (2007). "Predicting Project Velocity in XP using a
       Learning Dynamic Bayesian Network Model." IEEE Trans Software Eng
       (submitted)
237.   Hearty, P., N. Fenton, et al. (2005). Automated population of causal models for
       improved software risk assessment. ASE '05: Proceedings of the 20th
       IEEE/ACM international Conference on Automated software engineering, Long
       Beach, CA, USA, ACM Press.
238.   Heckerman and EricHorvitz (1998). Inferring Informational Goals from Free-
       Text Queries: A Bayesian Approach. In: Proceedings of the Fourteenth
       Conference on Uncertainty in Artificial Intelligence, Madison, WI, pages 230-
       237. Morgan Kaufmann: San Francisco, July
239.   Heckerman, D. and J. S. Breese (1995). Causal independence for probability
       assessment and inference using Bayesian networks. Microsoft Technical Report
       MSR-TR-94-08, to appear in IEEE Systems Man and Cybernetics
240.   Heckerman, D., D. Geiger, et al. (1995). Learning Bayesian networks: trhe
       combination of knowledge and statistical data. Machine Learning, 20, 197-243

241.   Heckerman, D., A. Mamdani, et al. (1995). Real-world applications of Bayesian
       networks. Comm ACM, 38(3), 25-26
242.   Hejlesen, O., S. Andreassen, et al. (1997). "DIAS--the diabetes advisory system:
       an outline of the system and the evaluation results obtained so far." Comput
       Methods Programs Biomed 54(1-2): 49-58
243.   Hejlesen, O. K., K. G. Olesen, et al. (2005). "Decision support for diagnosis of
       lyme disease." Stud Health Technol Inform 116: 205-10
244.   Helman, P., R. Veroff, et al. (2004). "A Bayesian network classification
       methodology for gene expression data." J Comput Biol 11(4): 581-615
245.   Helsper, E. M., L. C. v. d. Gaag, et al. (2005). Bringing order into Bayesian-
       network construction. Third International Conference on Knowledge Capture,
       New York: ACM Press: 121-128
246.   Henderson, J. S. and R. W. Burn (2004). "Uptake pathways: the potential of
       Bayesian belief networks to assist the management, monitoring and evaluation of
       development-orientated research." Agricultural Systems 79(1): 3-15
247.   Henriksen, H. J., P. Rasmussen, et al. (2007). "Public participation modelling
       using Bayesian networks in management of groundwater contamination."
       Environmental Modelling & Software 22(8): 1101-1113
248.   Henrion, M. (1989). Some Practical Issues in Constructing Belief Networks.
       Uncertainty in Artificial Intelligence 3. L. Kanal, T. Levitt and J. Lemmer, North
       Holland: Elsevier Science: 161-173
249.   Hepler, A. B., A. P. Dawid, et al. (2007). "Object-oriented graphical
       representations of complex patterns of evidence." Law, Probability & Risk 6(1-
       4): 275-293
250.   Hepler, A. B. and B. S. Weir (2004). Using Bayesian Networks for Paternity
       Calculations: Adding an Evolutionary Perspective. JSM (Joint Statistical
       Meetings) 2004. Toronto, Canada
251.   Hernan, M. A. (2004). "A definition of causal effect for epidemiological
       research." J Epidemiol Community Health 58(4): 265-71
252.   Hernan, M. A. and J. M. Robins (2006). "Instruments for causal inference: an
       epidemiologist's dream?" Epidemiology 17(4): 360-72
253.   Herskovits, E. H. and G. F. Cooper (1991). "Algorithms for Bayesian belief-
       network precomputation." Methods Inf Med 30(2): 81-9
254.   Hibou, M. and J.-M. Labat (2006). How to orientate arcs in a Bayesian network
       based student model. 6th IEEE International Conference on Advance Learning
       Technologies: 560-562
255.   Hoeffer, B. (1987). "A causal model of loneliness among older single women."
       Arch Psychiatr Nurs 1(5): 366-73
256.   Hofler, M. (2005). "The Bradford Hill considerations on causality: a
       counterfactual perspective." Emerg Themes Epidemiol 2: 11
257.   Hofler, M. (2005). "Causal inference based on counterfactuals." BMC Med Res
       Methodol 5: 28
258.   Hofler, M. (2006). "Getting causal considerations back on the right track."
       Emerg Themes Epidemiol 3: 8
259.   Hogan, J. W. and D. O. Scharfstein (2006). "Estimating causal effects from
       multiple cycle data in studies of in vitro fertilization." Stat Methods Med Res
       15(2): 195-209
260.   Holst, A. and A. Lansner (1993). "A flexible and fault tolerant query-reply
       system based on a Bayesian neural network." Int J Neural Syst 4(3): 257-67
261.   Hoot, N. and D. Aronsky (2005). "Using Bayesian networks to predict survival
       of liver transplant patients." AMIA Annu Symp Proc: 345-9
262.   Horn, J., T. Birkhölzer, et al. (2001). Knowledge Acquisition and Automated
       Generation of Bayesian Networks for a Medical Dialogue and Advisory System.
       Lecture Notes In Computer Science; Vol. 2101 Proceedings of the 8th
       Conference on AI in Medicine in Europe: Artificial Intelligence Medicine Pages:
       199 - 202.
263.   Horvitz, E. (1998). Lumiere Project: Bayesian Reasoning for Automated
       Assistance, Decision Theory & Adaptive Systems Group, Microsoft Research.
       Microsoft Corp. Redmond, WA
        http://research.microsoft.com/research/dtg/horvitz/lum.htm.
264.   Horvitz, E. and M. Barry (1995). Display of information for time-critical
       decision making. 11th Conference on Uncertainty in Artificial Intelligence.
       Montreal
265.   Horvitz, E., J. Breese, et al. (1998). The Lumiere Project: Bayesian User
       Modeling for Inferring the Goals and Needs of Software Users. Proceedings of
       the Fourteenth Conference on Uncertainty in Artificial Intelligence
266.   Huaien, L. and S. Puthusserypady (2004). "Bayesian radial basis function
       network for modeling fMRI data." Conf Proc IEEE Eng Med Biol Soc 1: 450-3

267.   Huang, C. and A. Darwiche (1996). "Inference in Belief Networks: A Procedural
       Guide." International Journal of Approximate Reasoning (IJAR) 15(3): 225-263

268.   Hudson, L. D., B. S. Ware, et al. An Application of Bayesian Networks to
       Antiterrorism Risk Management for Military Planners
        www.dsbox.com/Images/UAI_Antiterrorism_Paper.pdf.
269.   Hummel, R. and L. Manevitz (1996). "A statistical approach to the
       representation of uncertainty in beliefs using spread of opinions."
270.   Husmeier, D., W. D. Penny, et al. (1999). "An empirical evaluation of Bayesian
       sampling with hybrid Monte Carlo for training neural network classifiers."
       Neural Netw 12(4-5): 677-705
271.   Huygen, P. E. M. (2002). Use of Bayesian Belief Networks in legal reasoning.
       17th BILETA Annual Conference. Free University, Amsterdam
         http://www.bileta.ac.uk/02papers/huygen.html.
272.   Hwang, K. and B. Zhang (2005). "Bayesian model averaging of Bayesian
       network classifiers over multiple node-orders: application to sparse datasets."
       IEEE Trans Syst Man Cybern B Cybern 35(6): 1302-10
273.   Imoto, S., S. Kim, et al. (2003). "Bayesian network and nonparametric
       heteroscedastic regression for nonlinear modeling of genetic network." J
       Bioinform Comput Biol 1(2): 231-52
274.   Imoto, S., K. Sunyong, et al. (2002). "Bayesian network and nonparametric
       heteroscedastic regression for nonlinear modeling of genetic network." Proc
       IEEE Comput Soc Bioinform Conf 1: 219-27
275.   Jensen, F. V. (1996). An Introduction to Bayesian Networks.
276.   Jensen, F. V., S. L. Lauritzen, et al. (1990). An algebra of bayesian belief
       universes for knowledge based systems. Networks, 20, 637-659
277.   Jensen, F. V. and T. Nielsen (2007). Bayesian Networks and Decision Graphs,
       Springer-Verlag New York Inc.
278.   Ji, Q., P. Lan, et al. (2006). "A Probabilistic Framework for Modeling and Real-
       Time Monitoring Human Fatigue." IEEE TRANSACTIONS ON SYSTEMS,
       MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS 36(5):
       862-875
279.   Joseph, A., N. Fenton, et al. (2006). "Predicting football results using Bayesian
       Nets and other Machine Learning Techniques." Knowledge Based Systems
       17(7): 544-553
280.   Jowett, C. (2001). Sittin' in the Dock with the Bayes. New Law Journal Expert
       Witness Supplement of Feb 16
281.   Kahn, C. E., Jr., J. J. Laur, et al. (2001). "A Bayesian network for diagnosis of
       primary bone tumors." J Digit Imaging 14(2 Suppl 1): 56-7
282.   Kahn, C. E., Jr., L. M. Roberts, et al. (1997). "Construction of a Bayesian
       network for mammographic diagnosis of breast cancer." Comput Biol Med
       27(1): 19-29
283.   Kahn, C. J., J. Laur, et al. (2001). "A Bayesian network for diagnosis of primary
       bone tumors." J Digit Imaging 14(2 Suppl 1): 56-7
284.   Kahn, C. J., L. Roberts, et al. (1997). "Construction of a Bayesian network for
       mammographic diagnosis of breast cancer." Comput Biol Med 27(1): 19-29
285.   Kahn, C. J., L. Roberts, et al. (1995). "Preliminary investigation of a Bayesian
       network for mammographic diagnosis of breast cancer." Proc Annu Symp
       Comput Appl Med Care: 208-12
286.   Kang, C. W. and M. W. Golay (1999). "A Bayesian belief network-based
       advisory system for operational availability focused diagnosis of complex
       nuclear power systems." Expert Systems with Applications 17(1): 21-32
287.   Kannan, P. R. (2007). "Bayesian networks: Application in safety instrumentation
       and risk reduction." ISA Transactions 46(2): 255-259
288.   Karraz, G. and G. Magenes (2006). "Automatic Classification of Heartbeats
       using Neural Network Classifier based on a Bayesian Framework." Conf Proc
       IEEE Eng Med Biol Soc 1: 4016-9
289.   Kayaalp, M., G. F. Cooper, et al. (2000). "Predicting ICU mortality: a
       comparison of stationary and nonstationary temporal models." Proc AMIA
       Symp: 418-22
290.   Kazi, J. I., P. N. Furness, et al. (1998). "Diagnosis of early acute renal allograft
       rejection by evaluation of multiple histological features using a Bayesian belief
       network." J Clin Pathol 51(2): 108-13
291.   Khodakarami, V., N. Fenton, et al. (2007). "Project Scheduling: Improved
       approach to incorporate uncertainty using Bayesian Networks." Project
       Management Journal 38: 39-49
292.   Kiebel, S., M. Garrido, et al. (2007). "Dynamic causal modelling of evoked
       responses: the role of intrinsic connections." Neuroimage 36(2): 332-45
293.   Kikuchi, T., H. Pezeshk, et al. (2007). "A Bayesian cost-benefit approach to the
       determination of sample size in clinical trials." Stat Med
294.   Kim, J. S., J. Kaye, et al. (2001). "Moderating and mediating effects in causal
       models." Issues Ment Health Nurs 22(1): 63-75
295.   Kim, S., S. Imoto, et al. (2004). "Dynamic Bayesian network and nonparametric
       regression for nonlinear modeling of gene networks from time series gene
       expression data." Biosystems 75(1-3): 57-65
296.   Kline, J. A., A. J. Novobilski, et al. (2005). "Derivation and validation of a
       Bayesian network to predict pretest probability of venous thromboembolism."
       Ann Emerg Med 45(3): 282-90
297.   Koller, D., U. Lerner, et al. (1999). A General Algorithm for Approximate
       Inference and its Application to Hybrid Bayes Nets. In Proceedings of the 15th
       Annual Conference on Uncertainty in AI (UAI), Stockholm, Sweden, August
       1999, pages 324-333
298.   Koller, D. and A. Pfeffer (1997). Object-Oriented Bayesian Networks.
       Proceedings of the 13th Annual Conference on Uncertainty in AI (UAI)
       Providence, Rhode Island: 302-313
299.   Korb, K. B. and A. E. Nicholson (2004). Bayesian Artificial Intelligence, CRC
       Press.
300.   Kozlov, A. V. and D. Koller (1997). Nonuniform dynamic discretization in
       hybrid networks. Proceedings of the 13th Annual Conference on Uncertainty in
       AI (UAI). Providence, Rhode Island: 314-325
301.   Kozlov, A. V. and J. P. Singh (1996). "Parallel implementation of probabilistic
       inference."
302.   Krause, P. (1998). "Learning probabilistic networks." The Knowledge
       Engineering Review 15(3): 321-351
303.   Lacave, C. and F. J. Diez (2002). "A review of explanation methods for
       Bayesian networks." Knowl. Eng. Rev. 17(2): 107-127
304.   Lam, S. K. and A. Owen (2007). "Combined resynchronisation and implantable
       defibrillator therapy in left ventricular dysfunction: Bayesian network meta-
       analysis of randomised controlled trials." BMJ
305.   Lam, W. and F. Bacchus (1994). Learning Bayesian Belief Networks: An
       Approach based on the MDL Principle. Computation Intelligence Vol 10:4,
       pages 269--293
306.   Langseth, H. (2002). Bayesian Networks with Applications in Reliability
       Analysis. Dept. of Mathematical Sciences, Norwegian University of Science and
       Technology. PhD
307.   Langseth, H. and L. Portinale (2007). "Bayesian networks in reliability." Reliab
       Eng Syst Saf 92(1): 92-108
308.   Lansner, A. and A. Holst (1996). "A higher order Bayesian neural network with
       spiking units." Int J Neural Syst 7(2): 115-28
309.   Laskey, K. and S. Mahoney (1998). Network fragments: representing knowledge
       for constructing probabilistic model networks. 13th Annual Conference on
       Uncertainty in AI       http://site.gmu.edu/~klaskey/lectures.html.
310.   Laskey, K. B. (1995). Sensitivity Analysis for Probability Assessments in
       Bayesian Networks. IEEE Transactions on Systems, Man, and Cybernetics 25(6)
       pp. 901-909
311.   Laskey, K. B. and S. M. Mahoney (2005). "Network engineering for agile belief
       network models." IEEE Transactions on Knowledge and Data Engineering 12
       (4): 487-498
312.   Laskey, K. B. and S. Mahoney. (2000). "Network Engineering for Agile Belief
       Network Models." IEEE Transactions on Knowledge and Data Engineering
       12(4): 487-498
313.   Lauría, E. J. M. and P. J. Duchessi (2006). "A Bayesian Belief Network for IT
       implementation decision support." Decision Support Systems 42(3): 1573-1588

314.   Lauritzen, S. L. (1996). Graphical Models, Clarendon Press, Oxford.
315.   Lauritzen, S. L. and D. J. Spiegelhalter (1988). Local Computations with
       Probabilities on Graphical Structures and their Application to Expert Systems
       (with discussion). J. R. Statis. Soc. B, 50, No 2, pp 157-224
316.   Le Duff, F., C. Muntean, et al. (2004). "Predicting survival causes after out of
       hospital cardiac arrest using data mining method." Medinfo 11(Pt 2): 1256-9
317.   Lederer, A. L. and J. Prasad (1998). "A causal model for software cost
       estimating error."
318.   Lee, C.-J. and K. J. Lee (2005). "Application of Bayesian network to the
       probabilistic risk assessment of nuclear waste disposal." Reliability Engineering
       & System Safety 91(5): 515-532
319.   Lee, P. M. (1997). Bayesian Statistics: An Introduction, 2nd Edn.
320.   Lee, S.-M. and P. A. Abbott (2003). "Bayesian networks for knowledge
       discovery in large datasets: basics for nurse researchers." J. of Biomedical
       Informatics 36(4/5): 389-399
321.   Leegon, J. and D. Aronsky (2006). "Impact of different training strategies on the
       accuracy of a Bayesian network for predicting hospital admission." AMIA Annu
       Symp Proc: 474-8
322.   Leegon, J., I. Jones, et al. (2005). "Predicting hospital admission for Emergency
       Department patients using a Bayesian network." AMIA Annu Symp Proc: 1022
323.   Lehmann, H. and E. Shortliffe (1991). "Thomas: building Bayesian statistical
       expert systems to aid in clinical decision making." Comput Methods Programs
       Biomed 35(4): 251-60
324.   Leibovici, L., M. Fishman, et al. (2000). "A Causal Probabilistic Network for
       Optimal Treatment of Bacterial Infection." IEEE Transactions on Knowledge
       and Data Engineering 12(4): 517-528
325.   Levitt, T. S. and K. B. Laskey (2000). "Computational Inference for Evidential
       Reasoning in Support of Judicial Proof." Cardozo Law Review 22: 1691-1731

326.   Lewis, N. D. C. (1999). "Continuous process improvement using Bayesian belief
       networks." Computers & Industrial Engineering 37(1-2): 449-452
327.   Li, W., P. van Beek, et al. Performing Incremental Bayesian Inference by
       Dynamic Model Counting           http://citeseer.ist.psu.edu/li06performing.html.
328.   Liang, Y. and A. G. Kelemen (2004). "Hierarchical Bayesian neural network for
       gene expression temporal patterns." Stat Appl Genet Mol Biol 3: Article20
329.   Lin, J.-H. and P. J. Haug (2008). "Exploiting missing clinical data in Bayesian
       network modeling for predicting medical problems." J. of Biomedical
       Informatics 41(1): 1-14
330.   Lindley, D. V. (1985). Making Decisions. John Wiley and Sons
331.   Lindquist, M. (2007). "Use of triage strategies in the WHO signal-detection
       process." Drug Saf 30(7): 635-7
332.   Lindquist, M., M. Stahl, et al. (2000). "A retrospective evaluation of a data
       mining approach to aid finding new adverse drug reaction signals in the WHO
       international database." Drug Saf 23(6): 533-42
333.   Lipsky, A. and R. Lewis (2005). "Placing the Bayesian network approach to
       patient diagnosis in perspective." Ann Emerg Med 45(3): 291-4
334.   Lisboa, P. J., H. Wong, et al. (2003). "A Bayesian neural network approach for
       modelling censored data with an application to prognosis after surgery for breast
       cancer." Artif Intell Med 28(1): 1-25
335.   Littlewood, B., L. Strigini, et al. (2000). Bayesian Belief Networks for Safety
       Assessment of Computer-based Systems. System Performance Evaluation
       Methodologies and Applications. E. Gelenbe, CRC Press, Boca Raton: 349-364.
336.   Littlewood, B. and J. L. Verrall (1973). A Bayesian reliability growth model for
       computer software. J Royal Statist. Soc. C22, 332-34
337.   Littlewood, B. and D. Wright (2007). "The Use of Multilegged Arguments to
       Increase Confidence in Safety Claims for Software-Based Systems: A Study
       Based on a BBN Analysis of an Idealized Example." Software Engineering,
       IEEE Transactions on 33(5): 347-365

338.   Littlewood, B. and D. R. Wright (1995). A Bayesian model that combines
       disparate evidence for the quantitative assessment of system dependability. Proc
       14th International Conference on Computer Safety (SafeComp'95), pp 173-188,
       Springer
339.   Long, W. J., H. Fraser, et al. (1997). "Reasoning requirements for diagnosis of
       heart disease." Artif Intell Med 10(1): 5-24
340.   Lovell, D. R., B. Rosario, et al. (1997). "Design, construction and evaluation of
       systems to predict risk in obstetrics." Int J Med Inform 46(3): 159-73
341.   Lucas, P. F. J. (2001). Certainty-factor-like structures in Bayesian belief
       networks. Knowledge-Based Systems 14, 327-335
342.   Lucas, P. J., L. C. van der Gaag, et al. (2004). "Bayesian networks in
       biomedicine and health-care." Artif Intell Med 30(3): 201-14
343.   Luciani, D., S. Cavuto, et al. (2007). "Bayes pulmonary embolism assisted
       diagnosis: a new expert system for clinical use." Emerg Med J 24(3): 157-64
344.   Luciani, D., M. Marchesi, et al. (2003). "The role of Bayesian Networks in the
       diagnosis of pulmonary embolism." J Thromb Haemost 1(4): 698-707
345.   Luo, J., A. E. Savakis, et al. (2005). "A Bayesian network-based framework for
       semantic image understanding." Pattern Recognition 38(6): 919-934
346.   Luu, V. T., S.-Y. Kim, et al. (2008). "Quantifying schedule risk in construction
       projects using Bayesian belief networks." International Journal of Project
       Management In Press, Corrected Proof
347.   Ma, J., J. Yang, et al. (2006). "[Automatic diagnosis of malignant degree of brain
       glioma based on Bayesian network]." Sheng Wu Yi Xue Gong Cheng Xue Za
       Zhi 23(1): 184-8
348.   Ma, L., T. Arentze, et al. (2007). "Modelling land-use decisions under conditions
       of uncertainty." Computers, Environment and Urban Systems 31(4): 461-476

349.   Ma, W., J. Beck, et al. (2006). "Bayesian inference with probabilistic population
       codes." Nat Neurosci 9(11): 1432-8
350.   Madsen, A. L. (2007). Bayesian Networks And Influence Diagrams. New York,
       Springer Verlag.
351.   Maglogiannis, I., E. Zafiropoulos, et al. (2006). "Risk analysis of a patient
       monitoring system using Bayesian Network modeling." J Biomed Inform 39(6):
       637-47
352.   Mahoney, S. M. and K. B. Laskey (1996). Network Engineering for Complex
       Belief Networks. Twelfth Conference on Uncertainty in Artificial Intelligence:
       389-396
353.   Mani, S. and G. F. Cooper (2004). "Causal discovery using a Bayesian local
       causal discovery algorithm." Medinfo 11(Pt 1): 731-5
354.   Mani, S. and M. Pazzani (1998). "Guideline generation from data by induction
       of decision tables using a Bayesian network framework." Proc AMIA Symp:
       518-22
355.   Mani, S., M. Valtorta, et al. (2005). "Building Bayesian Network Models in
       Medicine: The MENTOR Experience." Applied Intelligence 22(2): 93-108
356.   Marcot, B. G., R. S. Holthausen, et al. (2001). "Using Bayesian belief networks
       to evaluate fish and wildlife population viability under land management
       alternatives from an environmental impact statement." Forest Ecology and
       Management 153(1-3): 29-42
357.   Markides, K. S. and H. W. Martin (1979). "A causal model of life satisfaction
       among the elderly." J Gerontol 34(1): 86-93
358.   Marquez, D., M. Neil, et al. (2007). Improved Dynamic Fault Tree modelling
       using Bayesian Networks. The 37th Annual IEEE/IFIP International Conference
       on Dependable Systems and Networks, DSN 2007. Edinburgh, IEEE
359.   Marquez, D., M. Neil, et al. (2008). Solving Dynamic Fault Trees using a New
       Hybrid Bayesian Network Inference Algorithm. 16th Mediterranean Conference
       on Control and Automation (MOD 08). Ajaccio, Corsica, France
360.   Marquez, D., M. Neil, et al. (2007). A new Bayesian Network approach to
       Reliability modelling. 5th International Mathematical Methods in Reliability
       Conference (MMR 07). Glasgow
        http://www.dcs.qmw.ac.uk/~norman/papers/Improved%20DFT%20modelling
       %20using%20BNs_v1.pdf.
361.   Marquez, D., M. Neil, et al. (2008). Reliability Modelling Using Hybrid
       Bayesian Networks. ISBIS-2008 International Symposium on Business and
       Industrial Statistics. Prague, Czech Republic
362.   Marsh, D. W. R. and G. J. Bearfield (2007). Merging Event Trees Using
       Bayesian Networks. ESREL 2007. Stavanger, Norway, Springer-Verlag
363.   Marsh, W. and G. Bearfield (2004). Using Bayesian Networks to model accident
       causation in the UK railway industry. Seventh international conference PSAM.
       Berlin, Germany
364.   Marsh, W. and G. Bearfield (2007). Representing Parameterised Fault Trees
       using Bayesian Networks. 26th International Conference on Computer Safety,
       Reliability and Security, (SAFECOMP 2007), Springer-Verlag.
365.   Marshall, A. H., S. I. McClean, et al. (2001). "Developing a Bayesian belief
       network for the management of geriatric hospital care." Health Care Manag Sci
       4(1): 25-30
366.   Marshall, A. H., S. I. McClean, et al. (2002). "Modelling patient duration of stay
       to facilitate resource management of geriatric hospitals." Health Care Manag Sci
       5(4): 313-9
367.   Maskery, S. M., H. Hu, et al. (2008). "A Bayesian derived network of breast
       pathology co-occurrence." J. of Biomedical Informatics 41(2): 242-250
368.   Mathieu, H. and L. Jean-Marc (2006). How to Orientate Arcs in a Bayesian
       Network Based Student Model? Proceedings of the Sixth IEEE International
       Conference on Advanced Learning Technologies, IEEE Computer Society: 560 -
       562
369.   Matsushita, Y., Y. Kuroda, et al. (2007). "Criteria revision and performance
       comparison of three methods of signal detection applied to the spontaneous
       reporting database of a pharmaceutical manufacturer." Drug Saf 30(8): 715-26

370.   Matthews, R. (1998). The Cassandra Criterion. Mathematics Today (Bulletin of
       the IMA), 34(1), 7-10
371.   Mayo, M. and A. Mitrovic (2001). "Optimising ITS Behaviour with Bayesian
       Networks and Decision Theory." International Journal of Artificial Intelligence

372.   Mazzucchelli, R., A. Santinelli, et al. (2001). "Urothelial papillary lesions.
       Development of a Bayesian Belief Network for diagnosis and grading."
       Anticancer Res 21(2A): 1157-62
373.   McKendrick, I. J., G. Gettinby, et al. (2000). "Using a Bayesian belief network
       to aid differential diagnosis of tropical bovine diseases." Prev Vet Med 47(3):
       141-56
374.   Mercier, C. and S. King (1994). "A latent variable causal model of the quality of
       life and community tenure of psychotic patients." Acta Psychiatr Scand 89(1):
       72-7
375.   Merkhofer, M. W. (1990). Using influence diagrams in multiattribute utility
       analysis - improving effectiveness through improving communication. Chapter
       13 in 'Belief Nets and Decision Analysis', Oliver RM and Smith JQ (eds), Wiley

376.   Michalowski, W., S. Wilk, et al. (2006). "Using a Bayesian belief network model
       to categorize length of stay for radical prostatectomy patients." Health Care
       Manag Sci 9(4): 341-8
377.   Michel, M. and R. Jacobs (2007). "Parameter learning but not structure learning:
       a Bayesian network model of constraints on early perceptual learning." J Vis
       7(1): 4
378.   Midkiff, R. M., Jr., J. P. Burke, et al. (1989). "A causal model of mathematics
       performance in early adolescence: the role of sex." Psychol Rep 64(1): 167-76

379.   Millard, A. V. (1994). "A causal model of high rates of child mortality." Soc Sci
       Med 38(2): 253-68
380.   Mittal, A. and L. F. Cheong (2004). Addressing the Problems of Bayesian
       Network Classification of Video Using High-Dimensional Features. IEEE
       TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.
       16, NO. 2
381.   Mittal, A. and A. Kassim (2007). Bayesian Network Technologies: Applications
       and Graphical Models.
382.   Mittnik, S. and I. Starobinskaya (2007). "Modeling Dependencies in Operational
       Risk with Hybrid Bayesian Networks." Methodol Comput Appl Probab
383.   Monti, S. and G. Carenini (2000). "Dealing with the Expert Inconsistency in
       Probability Elicitation." IEEE Transactions on Knowledge and Data Engineering
       12(4): 499-508
384.   Montironi, R., P. H. Bartels, et al. (1996). "Atypical adenomatous hyperplasia
       (adenosis) of the prostate: development of a Bayesian belief network for its
       distinction from well-differentiated adenocarcinoma." Hum Pathol 27(4): 396-
       407
385.   Montironi, R., P. H. Bartels, et al. (1996). "Androgen-deprived prostate
       adenocarcinoma: evaluation of treatment-related changes versus no distinctive
       treatment effect with a Bayesian belief network. A methodological approach."
       Eur Urol 30(3): 307-15
386.   Montironi, R., P. H. Bartels, et al. (1994). "Prostatic intraepithelial neoplasia.
       Development of a Bayesian belief network for diagnosis and grading." Anal
       Quant Cytol Histol 16(2): 101-12
387.   Montironi, R., P. H. Bartels, et al. (1995). "Prostatic intraepithelial neoplasia
       (PIN). Performance of Bayesian belief network for diagnosis and grading." J
       Pathol 177(2): 153-62
388.   Montironi, R., L. Diamanti, et al. (1997). "Subtle changes in benign tissue
       adjacent to prostate neoplasia detected with a Bayesian belief network." J Pathol
       182(4): 442-9
389.   Montironi, R., R. Mazzucchelli, et al. (2002). "Improving inter-observer
       agreement and certainty level in diagnosing and grading papillary urothelial
       neoplasms: usefulness of a Bayesian belief network." Eur Urol 41(4): 449-57

390.   Montironi, R., W. F. Whimster, et al. (1996). "How to develop and use a
       Bayesian Belief Network." J Clin Pathol 49(3): 194-201
391.   Moore, A. and D. Zuev (2005). Internet Traffic Classification using bayesian
       analysis techniques. SIGMETRICS '05, June 6-10, Banff, Canada
392.   Morales-Napoles, O., D. Kurowicka, et al. (2008). "Continuous-discrete non-
       parametric Bayesian Belief Nets in Aviation Safety with UNINET."
       Computational Statistics and Data Analysis submitted
393.   Moran, A., I. Bar-Gad, et al. (2006). "Real-time refinement of subthalamic
       nucleus targeting using Bayesian decision-making on the root mean square
       measure." Mov Disord 21(9): 1425-31
394.   Morelli, R., J. Bronzino, et al. (1987). "Expert systems in psychiatry. A review."
       J Med Syst 11(2-3): 157-68
395.   Morgan, B. W. (1968). An Introduction to Bayesian Statistical Decision
       Processes.
396.   Morris, S. B., D. Cork, et al. (1997). "The cognitive processing of causal
       knowledge."
397.   Morrison, M., W. McCluggage, et al. (2002). "Expert system support using a
       Bayesian belief network for the classification of endometrial hyperplasia." J
       Pathol 197(3): 403-14
398.   Mortera, J., A. P. Dawid, et al. (2003). "Probabilistic expert systems for DNA
       mixture profiling." Theor. Pop. Biol 63: 191-205
399.   Moses, J. and M. Farrow (2003). A Procedure for Assessing the Influence of
       Problem Domain on Effort Estimation Consistency. Software Quality J, 11, 283-
       300
400.   Mossman, D. (2000). "Interpreting clinical evidence of malingering: a Bayesian
       perspective." J Am Acad Psychiatry Law 28(3): 293-302
401.   Muller, P. and D. R. Insua (1998). "Issues in Bayesian Analysis of Neural
       Network Models." Neural Comput 10(3): 749-70
402.   Murad, N. (2004). Research into and Devlepment of an Infrastructure Risk
       management Model and Related Processes (with Eli Lilly and Co Ltd). MSc,
       University of Surrey, Dept of Computing
403.   Murphy, K. (1998 ). "A Brief Introduction to Graphical Models and Bayesian
       Networks."
404.   http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html.
405.   Murphy, K. (1999). A variational approximation for Bayesian networks with
       discrete and continuous latent variables. Uncertainty in AI, 15. K. Laskey and H.
       Prade: 467-475
406.   Murphy, K. P. (2001). "The Bayes net toolbox for Matlab." Computing Science
       and Statistics 33 http://www.cs.berkeley.edu/ murphyk/Bayes/bnt.html.
407.   Nasir, D., B. McCabe, et al. (2003). "Evaluating Risk in Construction–Schedule
       Model (ERIC–S) Construction Schedule Risk Model." Journal of Construction
       Engineering and Management 129(5): 518-527
408.   Neapolitan, R. E. (2004). Learning Bayesian Networks, Prentice Hall.
409.   Neff, J. A. and S. L. Crawford (1998). "The Health Belief Model and HIV risk
       behaviours: a causal model analysis among Anglos, African-Americans and
       Mexican-Americans." Ethn Health 3(4): 283-99
410.   Negrín, M. and F. Vázquez-Polo (2006). "Bayesian cost-effectiveness analysis
       with two measures of effectiveness: the cost-effectiveness acceptability plane."
       Health Econ 15(4): 363-72
411.   Neil, M. and N. Fenton (2005). Improved Methods for building large-scale
       Bayesian Networks. The Third Bayesian Modeling Applications Workshop,
       Uncertainty in Artificial Intelligence (UAI) 2005, Edinburgh University.
412.   Neil, M., N. Fenton, et al. (2003). Assessing Vehicle Reliability using Bayesian
       Networks. Global Vehicle Reliability J. E. Strutt and P. L. Hall, Professional
       Engineering Publishing: 25-42.
413.   Neil, M., N. Fenton, et al. (2007). Using Bayesian Networks and Simulation for
       Data Fusion and Risk Analysis. NATO Science for Peace and Security Series:
       Information and Communication Security. Skanata and D. M. Byrd, IOS Press,
       Nieuwe Hemweg 6B, 1013 BG Amsterdam, The Netherlands. 13.
414.   Neil, M., N. Fenton, et al. (2000). "Building large-scale Bayesian Networks."
       The Knowledge Engineering Review, 15(3) 15(3): 257-284
415.   Neil, M., N. Fenton, et al. (2005). "Using Bayesian networks to model expected
       and unexpected operational losses." RISK ANALYSIS 25(4): 963-972
416.   Neil, M. and N. E. Fenton (1996). Predicting software quality using Bayesian
       belief networks. Proc 21st Annual Software Eng Workshop. V. Basili. NASA
       Goddard Space Flight Centre: 217-230
417.   Neil, M. and N. E. Fenton (1999). Applying Bayesian Belief Networks to
       Critical Systems Assessment. Safety Critical Systems Club Newsletter, Centre
       for Software Reliability. 8: 10-13
418.   Neil, M. and N. E. Fenton (2001). EPSRC IMPRESS (IMproving the software
       PRocESS using Bayesian Networks) project final report, Queen Mary University
       of London
         http://www.dcs.qmul.ac.uk/research/radar/Projects/impress/impress%20igr.ht
       ml.
419.   Neil, M. and N. E. Fenton (2003). Process Modelling and object oriented
       Bayesian nets
420.   Neil, M., N. E. Fenton, et al. (2003). Modelling subjective causes and objective
       consequences in Bayesian Networks. RADAR Tech Report TR101
421.   Neil, M., N. E. Fenton, et al. (2001). "Using Bayesian Belief Networks to Predict
       the Reliability of Military Vehicles." IEE Computing and Control Engineering
       Journal 12(1): 11-20
422.   Neil, M., P. Krause, et al. (2003). Software Quality Prediction Using Bayesian
       Networks. Software Engineering with Computational Intelligence. T. M.
       Khoshgoftaar, Kluwer.
423.   Neil, M., B. Littlewood, et al. (1996). Applying Bayesian belief networks to
       systems dependability assessment. Safety-Critical Systems: the Convergence Of
       High Tech and Human Factors; Proceedings of the 4th Safety Critical Systems
       Symposium. F. Redmill, Springer Verlag: 71-93.
424.   Neil, M., B. Malcolm, et al. (2003). Modeling an Air Traffic Control
       Environment Using Bayesian Belief Networks. 21st International System Safety
       Conference Ottawa, Ontario, Canada
425.   Neil, M., D. Marquez, et al. (2008). "Using Bayesian Networks to Model the
       Operational Risk to Information Technology Infrastructure in Financial
       Institutions." Journal of Financial Transformation 22: 131-138
426.   Neil, M., M. Tailor, et al. (2006). Modeling Dependable Systems using Hybrid
       Bayesian Networks. First International Conference on Availability, Reliability
       and Security (ARES'06) IEEE Computer Society: 817-823
         http://doi.ieeecomputersociety.org/10.1109/ARES.2006.83.
427.   Neil, M., M. Tailor, et al. (2007). "Inference in hybrid Bayesian networks using
       dynamic discretization." Statistics and Computing 17(3): 219-233
         http://dx.doi.org/10.1007/s11222-007-9018-y.
428.   Neil, M., M. Tailor, et al. (2008). "Modelling dependable systems using hybrid
       Bayesian networks." Reliability Engineering and System Safety 93(7): 933-939

429.   Newton, A. C., E. Marshall, et al. (2006). "Use of a Bayesian belief network to
       predict the impacts of commercializing non-timber forest products on
       livelihoods." Ecology and Society 11(2): 24
430.   Newton, A. C., G. B. Stewart, et al. (2007). "Bayesian Belief Networks as a tool
       for evidence-based conservation management." Journal for Nature Conservation
       15(2): 144-160
431.   Ng, C. M. (2003). "Comparison of neural network, Bayesian, and multiple
       stepwise regression-based limited sampling models to estimate area under the
       curve." Pharmacotherapy 23(8): 1044-51
432.   Nguyen, S. T., H. T. Nguyen, et al. (2006). "Improved Head Direction Command
       Classification using an Optimised Bayesian Neural Network." Conf Proc IEEE
       Eng Med Biol Soc 1: 5679-82
433.   Niedermayer, D. An Introduction to Bayesian Networks and their Contemporary
       Applications. http://www.gpfn.sk.ca/
434.   Nikiforidis, G. and G. Sakellaropoulos (1998). "Expert system support using
       Bayesian belief networks in the prognosis of head-injured patients of the ICU."
       Med Inform (Lond) 23(1): 1-18
435.   Nikolajewa, S., R. Pudimat, et al. (2007). "BioBayesNet: a web server for feature
       extraction and Bayesian network modeling of biological sequence data." Nucleic
       Acids Res 35(Web Server issue): W688-93
436.   Nikovski, D. (2000). "Constructing Bayesian Networks for Medical Diagnosis
       from Incomplete and Partially Correct Statistics." IEEE Transactions on
       Knowledge and Data Engineering 12(4): 509-518
437.   Nordmann, J. P. and G. Berdeaux (2007). "Use of a bayesian network to predict
       the nighttime intraocular pressure peak from daytime measurements." Clin Ther
       29(8): 1751-60
438.   Nouraei, S. A., Q. J. Huys, et al. (2007). "Screening patients with sensorineural
       hearing loss for vestibular schwannoma using a Bayesian classifier." Clin
       Otolaryngol 32(4): 248-54
439.   Nyberg, J. B., B. G. Marcot, et al. (2006). "Using Bayesian belief networks in
       adaptive management." Canadian Journal of Forest Research 36: 3104-3116
440.   Oatley, G. C. and B. W. Ewart (2003). "Crimes analysis software: ‘pins in
       maps’, clustering and Bayes net prediction." Expert Systems with Applications
       25(4): 569-588
441.   Ogawa, N. and R. W. Hodge (1983). "Towards a causal model of childbearing
       and abortion attitudes in contemporary Japan." Popul Res Leads(No. 15): 1-32

442.   Olesen, K. G. (1993). "Causal probabilistic networks with both discrete and
       continuous variables."
443.   Oliver, R. M. and J. Q. Smith (1990). Belief Nets and Decision Analysis. J
       Wiley & Sons
444.   Olson, J. T., J. W. Rozenblit, et al. (2007). "Hardware/Software Partitioning
       Using Bayesian Belief Networks." Systems, Man and Cybernetics, Part A, IEEE
       Transactions on 37(5): 655-668
445.   Onisko, A., M. J. Druzdzel, et al. (2000). Learning Bayesian Network
       Parameters from Small Data Sets: Application of Noisy-OR Gates. In Workshop
       on �Bayesian and Causal Networks: From Inference to Data Mining, 12th
       European Conference on Artificial Intelligence (ECAI-2000), Berlin
446.   Onisko, A., M. J. Durzdel, et al. (1998). "A probabilistic causal model for
       diagnosis of liver disorders."
447.   Orre, R., A. Bate, et al. (2005). "A bayesian recurrent neural network for
       unsupervised pattern recognition in large incomplete data sets." Int J Neural Syst
       15(3): 207-22
448.   Padman, R., X. Bai, et al. (2007). "A new machine learning classifier for high
       dimensional healthcare data." Stud Health Technol Inform 129: 664-8
449.   Pang, B. C., V. Kuralmani, et al. (2007). "Hybrid outcome prediction model for
       severe traumatic brain injury." J Neurotrauma 24(1): 136-46
450.   Paraskevis, D., E. Magiorkinis, et al. (2004). "Phylogenetic reconstruction of a
       known HIV-1 CRF04_cpx transmission network using maximum likelihood and
       Bayesian methods." J Mol Evol 59(5): 709-17
451.   Patel, R., F. Bowman, et al. (2006). "A Bayesian approach to determining
       connectivity of the human brain." Hum Brain Mapp 27(3): 267-76
452.   Pearl, J. (1986). "Fusion, propagation, and structuring in belief networks."
453.   Pearl, J. (1988). Probabilistic reasoning in intelligent systems.
454.   Pearl, J. (1995). "Causal inference from indirect experiments." Artif Intell Med
       7(6): 561-82
455.   Pearl, J. (2000). Causality: Models Reasoning and Inference, Cambridge
       University Press.
456.   Peek, N., M. Verduijn, et al. (2007). "Bayesian networks for multivariate data
       analysis and prognostic modelling in cardiac surgery." Stud Health Technol
       Inform 129: 596-600
457.   Pe'er, D. (2005). "Bayesian network analysis of signaling networks: a primer."
       Sci STKE 2005(281): pl4
458.   Pena, J. M., J. Bjorkegren, et al. (2005). "Growing Bayesian network models of
       gene networks from seed genes." Bioinformatics 21 Suppl 2: ii224-9
459.   Pendharkar, P. C., G. H. Subramanian, et al. (2005). "A Probabilistic Model for
       Predicting Software Development Effort." IEEE Transactions on Software
       Engineering 31(7): 615-624
460.   Peng, S. Y., K. C. Wu, et al. (2007). "Predicting postoperative nausea and
       vomiting with the application of an artificial neural network." Br J Anaesth
       98(1): 60-5
461.   Penny, W. D. and S. J. Roberts (1999). "Bayesian neural networks for
       classification: how useful is the evidence framework?" Neural Netw 12(6): 877-
       892
462.   Pérez-Miñana, E. and J.-J. Gras (2006). "Improving fault prediction using
       Bayesian networks for the development of embedded software applications:
       Research Articles." Softw. Test. Verif. Reliab. 16(3): 157-174
        http://dx.doi.org/10.1002/stvr.v16:3.
463.   Petersen, M. L., S. E. Sinisi, et al. (2006). "Estimation of direct causal effects."
       Epidemiology 17(3): 276-84
464.   Peyrot, M. (1996). "Causal analysis: theory and application." J Pediatr Psychol
       21(1): 3-24
465.   Phillips, L. D., P. Humphreys, et al. (1990). A socio-technical approach to
       assessing human reliability. Chapter 11 in 'Belief Nets and Decision Analysis',
       Oliver RM and Smith JQ (eds), Wiley
466.   Pietz, K., M. M. Byrne, et al. (2006). "A decision-theoretic approach to
       identifying future high-cost patients." Med Care 44(9): 842-9
467.   Polley, M. J., D. A. Winkler, et al. (2004). "Broad-based quantitative structure-
       activity relationship modeling of potency and selectivity of farnesyltransferase
       inhibitors using a Bayesian regularized neural network." J Med Chem 47(25):
       6230-8
468.   Pourret, O., P. Naim, et al., Eds. (2008). Bayesian Networks: A Practical Guide
       to Applications (Statistics in Practice), John Wiley and Sons Ltd
469.   Price, G. J., W. G. McCluggage, et al. (2003). "Computerized diagnostic
       decision support system for the classification of preinvasive cervical squamous
       lesions." Hum Pathol 34(11): 1193-203
470.   Price, J. L. and C. W. Mueller (1981). "A causal model for turnover for nurses."
       Acad Manage J 24(3): 543-65
471.   Radliński, Ł., N. E. Fenton, et al. (2007). Improved Decision-Making for
       Software Managers Using Bayesian Networks. 11th IASTED Int. Conf.
       Software Engineering and Applications (SEA). Cambridge, MA, USA 13–19

472.   Radliński, Ł., N. E. Fenton, et al. (2007). "Modelling Prior Productivity and
       Defect Rates in a Causal Model for Software Project Risk Assessment." Polish
       Journal of Environmental Studies 16(4A): 256-260
473.   Ramoni, M. and P. Sebastiani (1998). Bayesian Methods for Intelligent Data
       Analysis. Knowledge Media Institute, The Open University, KMI-TR-67
474.   Ramoni, M. and P. Sebastiani (1998). Parameter Estimation in Bayesian
       Networks from Incomplete Databases. Intelligent Data Analysis, 2(1)
475.   Ratcliffe, B. and A. L. Rollo (1990). "Adapting function point analysis to
       Jackson System Development."
476.   Raval, A., Z. Ghahramani, et al. (2002). "A Bayesian network model for protein
       fold and remote homologue recognition." Bioinformatics 18(6): 788-801
477.   Reynolds, G. M., A. C. Peet, et al. (2007). "Generating prior probabilities for
       classifiers of brain tumours using belief networks." BMC Med Inform Decis
       Mak 7(1): 27
478.   Riviere, C., P. Lauret, et al. (2006). "A Bayesian Neural Network approach to
       estimating the Energy Equivalent Speed." Accid Anal Prev 38(2): 248-59
479.   Robertson, B. and T. Vignaux (1995). Interpreting Evidence: Evaluating
       Forensic Science in the Courtroom, John Wiley and Son Ltd.
480.   Robertson, B. and T. Vignaux. (2007). "The Bayesian Evidence Page."
481.   http://www.mcs.vuw.ac.nz/~vignaux/evidenceindex.html.
482.   Robins, J. M. and S. Greenland (1986). "The role of model selection in causal
       inference from nonexperimental data." Am J Epidemiol 123(3): 392-402
483.   Robles, V., P. Larrañaga, et al. (2004). "Bayesian network multi-classifiers for
       protein secondary structure prediction." Artif Intell Med 31(2): 117-36
484.   Rothman, K. J. and S. Greenland (2005). "Causation and causal inference in
       epidemiology." Am J Public Health 95 Suppl 1: S144-50
485.   Sabatti, C. and L. Rohlin (2004). "A Bayesian approach to expression network
       component analysis." Conf Proc IEEE Eng Med Biol Soc 4: 2933-6
486.   Sachs, K., D. Gifford, et al. (2002). "Bayesian network approach to cell signaling
       pathway modeling." Sci STKE 2002(148): PE38
487.   Sakellaropoulos, G. C. and G. C. Nikiforidis (1999). "Development of a
       Bayesian Network for the prognosis of head injuries using graphical model
       selection techniques." Methods Inf Med 38(1): 37-42
488.   Sakellaropoulos, G. C. and G. C. Nikiforidis (2000). Prognostic performance of
       two expert systems based on Bayesian belief networks. Decision Support
       Systems 27, 431-442
489.   Saks, M. J. and W. C. Thompson (2003). Assessing Evidence: Proving Facts.
       Handbook of Psychology in Legal Contexts (Second Edition). D. Carson and R.
       Bull.
490.   Sandberg, A., A. Lansner, et al. (2002). "A Bayesian attractor network with
       incremental learning." Network 13(2): 179-94
491.   Sanders, D. and D. Aronsky (2006). "Detecting asthma exacerbations in a
       pediatric emergency department using a Bayesian network." AMIA Annu Symp
       Proc: 684-8
492.   Sanders, D. and D. Aronsky (2006). "Prospective evaluation of a Bayesian
       Network for detecting asthma exacerbations in a Pediatric Emergency
       Department." AMIA Annu Symp Proc: 1085
493.   Sanders, D. L. and D. Aronsky (2006). "Detecting asthma exacerbations in a
       pediatric emergency department using a Bayesian network." AMIA Annu Symp
       Proc: 684-8
494.   Schachter, A. D., M. F. Ramoni, et al. (2007). "Economic evaluation of a
       bayesian model to predict late-phase success of new chemical entities." Value
       Health 10(5): 377-85
495.   Schaffner, K. F. (1993). "Clinical trials and causation: Bayesian perspectives."
       Stat Med 12(15-16): 1477-94; discussion 1495-9
496.   Schmitt, S. A. (1969). Measuring Uncertainty: An Elementary Introduction to
       Bayesian Statistics.
497.   Schriger, D., L. Baraff, et al. (1995). "EDECS: the Emergency Department
       Expert Charting System." Medinfo 8 Pt 2: 1665
498.   Schurink, C., P. Lucas, et al. (2005). "Computer-assisted decision support for the
       diagnosis and treatment of infectious diseases in intensive care units." Lancet
       Infect Dis 5(5): 305-12
499.   Schwartz, A. R., W. Gerin, et al. (2003). "Toward a causal model of
       cardiovascular responses to stress and the development of cardiovascular
       disease." Psychosom Med 65(1): 22-35
500.   Sebastiani, P., V. G. Nolan, et al. (2007). "A network model to predict the risk of
       death in sickle cell disease." Blood 110(7): 2727-35
501.   Shaffer, M. L. and V. M. Chinchilli (2004). "Bayesian inference for randomized
       clinical trials with treatment failures." Stat Med 23(8): 1215-28
502.   Shek, T. W. (1996). "Bayesian Belief Network in histopathology." J Clin Pathol
       49(10): 864
503.   Shenoy, P. and G. Shafer (1990). Axioms for probability and belief-function
       propagation. Readings in uncertain reasoning, Morgan Kaufmann Publishers Inc:
       575 - 610.
504.   Sierra, B. and P. Larranaga (1998). "Predicting survival in malignant skin
       melanoma using Bayesian networks automatically induced by genetic
       algorithms. An empirical comparison between different approaches." Artif Intell
       Med 14(1-2): 215-30
505.   Sierra, B., N. Serrano, et al. (2001). "Using Bayesian networks in the
       construction of a bi-level multi-classifier. A case study using intensive care unit
       patients data." Artif Intell Med 22(3): 233-48
506.   Sigurdsson, J. H., L. A. Walls, et al. (2001). "Bayesian belief nets for managing
       expert judgement and modelling reliabilit." Quality and Reliability Engineering
       International 17(3 ): 181 - 190
507.   Simon, C., P. Weber, et al. (2007). "Bayesian networks inference algorithm to
       implement Dempster Shafer theory in reliability analysis." Reliab Eng Syst
       Safety 10.1016/j.ress.2007.03.012.
508.   Simon, C., P. Weber, et al. (2007). "Bayesian Networks and Evidence Theory to
       Model Complex Systems." Reliability Journal of Computers 2(1): 33-43
509.   Singh, M. and M. Valtorta (1995). "Construction of Bayesian network structures
       from data: a brief survey and an efficient algorithm." International Journal of
       Approximate Reasoning (IJAR) 12: 111-131
510.   Skaanning, C. (2000). A Knowledge Acquisition Tool for Bayesian-Network
       Troubleshooters. Sixteenth Conference on Uncertainty in Artificial Intelligence.
       Stanford, CA: Stanford University
511.   Skaanning, C. (2003). Automated diagnosis of printer systems using Bayesian
       networks, US Patent 6535865 www.patentstorm.us/patents/6535865.html.
512.   Skaanning, C., F. J. Jensen, et al. (2000). Printer Troubleshooting Using
       Bayesian Networks. LECTURE NOTES IN COMPUTER SCIENCE, ISSU
       1821, 367-379.
513.   Smets, P. (1993). "Belief functions: the disjunctive rule of combination and the
       generalized Bayesian theorem." Int J Approx Reason 9(1): 1-35
514.   Smets, P. and K. R. (1994). "The transferable belief model." Artif Intell Med 66:
       191-243
515.   Smith, C. S., A. L. Howes, et al. (2007). "Using a Bayesian belief network to
       predict suitable habitat of an endangered mammal – The Julia Creek dunnart
       (Sminthopsis douglasi)." Biological Conservation 139(3-4): 333-347
516.   Smith, J. Q. and J. Croft (2003). "Bayesian networks for discrete multivariate
       data: an algebraic approach to inference." J. of Multivariate Analysis 84: 387-
       402
517.   Spiegelhalter, D., A. Dawid, et al. (1993). "Bayesian analysis in expert systems."
       Stat Sci 8: 219-83
518.   Spiegelhalter, D. J., A. P. Dawid, et al. (1991). "Probabilistic expert systems and
       graphical modelling: a case study in drug safety." Phil. Trans. R. Soc. Lond. 337:
       387-405
519.   Spiegelhalter, D. J. and S. L. Lauritzen (1990). "Sequential Updating of
       Conditional Probabilities on Directed Graphical Structure." NETWORKS 20:
       579-606
520.   Spirtes, P., C. Glymour, et al. (2000). Causation, Prediction, and Search,
       Adaptive Computation and Machine Learning. Cambridge, Massachusetts, MIT
       Press.
521.   Spirtes, P. L. (2002). Data mining tasks and methods: Probabilistic and casual
       networks: methodology for probabilistic networks, Handbook of data mining and
       knowledge discovery. New York, NY, Oxford University Press, Inc., .
522.   Srinivas, S. (1993). A Generalization of the Noisy-Or Model. Ninth Conference
       on Uncertainty in Artificial Intelligence: 208-218
523.   Stamelosa, I., L. Angelisa, et al. (2005). "On the use of Bayesian belief networks
       for the prediction of software productivity." Information and Software Tech 45
       (1): 51-60
524.   Stiber, N., M. Small, et al. (2004). "Site-specific updating and aggregation of
       Bayesian belief network models for multiple experts." Risk Anal 24(6): 1529-38

525.   Suebnukarn, S. and P. Haddawy (2006). "A Bayesian approach to generating
       tutorial hints in a collaborative medical problem-based learning system." Artif
       Intell Med 38(1): 5-24
526.   Suermondt, H. J. (1992). Explanation in Bayesian Belief Networks. Department
       of Computer Science and Medicine Stanford, CA, Stanford University. PhD
527.   Sun, W., G. M. Zeng, et al. (2005). "Bayesian regularized BP neural network
       model for quantitative relationship between the electrochemical reduction
       potential and molecular structures of chlorinated aromatic compounds." Huan
       Jing Ke Xue 26(2): 21-7
528.   Suzuki, J. (1996). Learning Bayesian belief networks based on the MDL
       principle: An efficient algorithm using the branch and bound technique.
       Proceedings of the international conference on machine learning. Bally, Italy

529.   Suzuki, K., H. Yoshida, et al. (2006). "Massive-training artificial neural network
       (MTANN) for reduction of false positives in computer-aided detection of
       polyps: Suppression of rectal tubes." Med Phys 33(10): 3814-24
530.   Tailor, M., M. Neil, et al. (2003). Bayesian Net propagation algorithms
531.   Tamada, Y., H. Bannai, et al. (2005). "Utilizing evolutionary information and
       gene expression data for estimating gene networks with bayesian network
       models." J Bioinform Comput Biol 3(6): 1295-313
532.   Tamada, Y., S. Kim, et al. (2003). "Estimating gene networks from gene
       expression data by combining Bayesian network model with promoter element
       detection." Bioinformatics 19 Suppl 2: ii227-36
533.   Tang, A., A. Nicholson, et al. (2007). "Using Bayesian belief networks for
       change impact analysis in architecture design
534.   " Journal of Systems and Software 80(1): 127-148
535.   Tang, Z., M. J. Taylor, et al. (2005). "Quantitative risk modelling for new
       pharmaceutical compounds." Drug Discov Today 10(22): 1520-6
536.   Taroni, F., C. Aitken, et al. (2006). Bayesian Networks and Probabilistic
       Inference in Forensic Science John Wiley & Sons.
537.   Taroni, F. and A. Biedermann (2005). Inadequacies of posterior probabilities for
       the assessment of scientific evidence. Law Probablity and Risk 4: 89-114
538.   Taroni, F., A. Biedermann, et al. (2004). "A general approach to Bayesian
       networks for the interpretation of evidence." Forensic Science International
       139(1): 5-16     http://www.sciencedirect.com/science/article/B6T6W-
       4B70FWS-2/2/00e9c4977552133141d6728478399ba9.
539.   Taroni, F., S. Bozza, et al. (2005). "Decision Analysis in forensic science."
       Journal of Forensic Sciences 50: 894-905
540.   Taroni, F., S. Bozza, et al. (2006). "Two items of evidence, no putative source:
       an inference problem in forensic intelligence." J Forensic Sci 51(6): 1350-61
541.   Tattari, S., T. Schultz, et al. (2003). "Use of belief network modelling to assess
       the impact of buffer zones on water protection and biodiversity." Agriculture,
       Ecosystems & Environment 96(1-3): 119-132
542.   Tepes, B., L. Szirovicza, et al. (2005). "Causal Bayesian network for tagging
       syntactical structure of Croatian sentences." Coll Antropol 29(2): 731-3
543.   The Economist (2001). Son of paperclip, 22 March 2001
        http://www.cs.ubc.ca/~murphyk/Bayes/econ.22mar01.html.
544.   Thomas, A., D. J. Spiegelhalter, et al. (1992). BUGS: A program to perform
       Bayesian inference using Gibbs sampling. Bayesian Statistics, . J. M. Bernardo,
       J.O. Berger, A. P. Dawid and A. F. Smith, University Press, Oxford. 4: 837-842.
545.   Thompson, W. C. and E. L. Schumann (1987). "Interpretation of statistical
       evidence in criminal trials." Law and Human Behavior 11(3): 167-187
         http://dx.doi.org/10.1007/BF01044641.
546.   Tian, L. and A. Noore (2004). "Software reliability prediction using recurrent
       neural network with Bayesian regularization." Int J Neural Syst 14(3): 165-74

547.   Ticehurst, J. L., L. H. Newham, et al. (2007). "A Bayesian network approach for
       assessing the sustainability of coastal lakes in New South Wales, Australia."
       Environ. Model. Softw. 22(8): 1129-1139
548.   Tienda-Luna, I. M., Y. Yin, et al. (2007). "Inferring the skeleton cell cycle
       regulatory network of malaria parasite using comparative genomic and
       variational Bayesian approaches." Genetica
549.   Tong, S. and D. Koller (2001). "Active Learning for Parameter Estimation in
       Bayesian Networks." ADVANCES IN NEURAL INFORMATION
       PROCESSING SYSTEMS ISSU 13: 647-653
550.   Tonglet, R., M. Mudosa, et al. (1992). "The causal model approach to nutritional
       problems: an effective tool for research and action at the local level." Bull World
       Health Organ 70(6): 715-23
551.   Trucco, P., E. Cagnoa, et al. (2007). "A Bayesian Belief Network modelling of
       organisational factors in risk analysis: A case study in maritime." Reliability
       Engineering & System Safety 93(6): 845-856
552.   Tucker, A., V. Vinciotti, et al. (2005). "A spatio-temporal Bayesian network
       classifier for understanding visual field deterioration." Artif Intell Med 34(2):
       163-77
553.   Tudor, R. S., R. Hovorka, et al. (1998). "DIAS-NIDDM--a model-based decision
       support system for insulin dose adjustment in insulin-treated subjects with
       NIDDM." Comput Methods Programs Biomed 56(2): 175-91
554.   Twardy, C., A. E. Nicholson, et al. (2006). "Epidemiological data mining of
       cardiovascular Bayesian networks." Electronic Journal of Health Informatics
       1(1): 1-13      http://www.ejhi.net.
555.   Van den Hurk, M. M., D. H. Dolmans, et al. (2001). "Testing a causal model for
       learning in a problem-based curriculum." Adv Health Sci Educ Theory Pract
       6(2): 141-9
556.   van der Gaag, L. C., S. Renooij, et al. (2002). "Probabilities for a Probabilistic
       Network: A Case-study in Oesophageal Cancer." Artif Intell Med 25(2): 123-48

557.   van Engelen, R. A. (1997). "Approximating Bayesian belief networks by arc
       removal." Pattern Analysis and Machine Intelligence, IEEE Transactions on
       19(8): 916-920
558.   van Koten, C. and A. R. Gray (2006). "Bayesian statistical effort prediction
       models for data-centred 4GL software development." Information and Software
       Technology 48(11 ): 1056-1067
559.   Varis, O. (1998). "A belief network approach to parameter estimation:
       application to resource and environmental management." Artificial Intelligence
       101: 135-163
560.   Verduijn, M., P. M. Rosseel, et al. (2007). "Prognostic Bayesian networks I:
       Rationale, learning procedure, and clinical use." J Biomed Inform
561.   Verduijn, M., P. M. Rosseel, et al. (2007). "Prognostic Bayesian networks II: An
       application in the domain of cardiac surgery." J Biomed Inform
562.   Vineis, P. and D. Kriebel (2006). "Causal models in epidemiology: past
       inheritance and genetic future." Environ Health 5: 21
563.   Vivarelli, F. and C. K. Williams (2001). "Comparing Bayesian neural network
       algorithms for classifying segmented outdoor images." Neural Netw 14(4-5):
       427-37
564.   Vomlel, J. (2004). "Bayesian networks in educational testing." Int. J. Uncertain.
       Fuzziness Knowl.-Based Syst. 12(SUPPLEMENT): 83-100
565.   Waldmann, M. R. (2000). "Competition among causes but not effects in
       predictive and diagnostic learning." Journal of experimental psychology:
       Learning, memory and cognition 26(1): 53-76
566.   Waldmann, M. R. (2001). "Predictive versus diagnostic causal learning:
       evidence from an overshadowing paradigm." Psychonomic Bulletin & Review 8:
       600-608
567.   Waldmann, M. R. and L. Martignon (1999). A Bayesian network model of
       causal learning. Proceeding of the 20th annual conference of the Cognitive
       Science Society. M. A. Gernsbasher and S. J. Derry. Mahwah, NJ, Erlbaum
568.   Wang, H. and M. J. Druzdel User interface tools for navigation inc onditional
       probability tables and eliciation of probabilities in Bayesian networks. School of
       Information Sciences & Intelligent Systems, University of Pittsburgh, PA 15260,
       www.sis.pitt.edu/
569.   Wang, H., F. Peng, et al. (2006). Software Project Level Estimation Model
       Framework based on Bayesian Belief Networks. Sixth International Conference
       on Quality Software (QSIC'06) 209-218
570.   Wang, M., Z. Chen, et al. (2007). "A hybrid Bayesian network learning method
       for constructing gene networks." Comput Biol Chem 31(5-6): 361-72
571.   Wang, X. H., B. Zheng, et al. (1999). "Computer-assisted diagnosis of breast
       cancer using a data-driven Bayesian belief network." Int J Med Inform 54(2):
       115-26
572.   Wang, Y. H., Y. Li, et al. (2005). "An in silico approach for screening flavonoids
       as P-glycoprotein inhibitors based on a Bayesian-regularized neural network." J
       Comput Aided Mol Des 19(3): 137-47
573.   Washington, S. and J. Oh (2006). "Bayesian methodology incorporating expert
       judgment for ranking countermeasure effectiveness under uncertainty: example
       applied to at grade railroad crossings in Korea." Accid Anal Prev 38(2): 234-47

574.   Wasyluk, H., A. Oniśko, et al. (2001). "Support of diagnosis of liver disorders
       based on a causal Bayesian network model." Med Sci Monit 7 Suppl 1: 327-32

575.   Watthayu, W. and Y. Peng (2004). A Bayesian Network Based Framework for
       Multi-Criteria Decision-Making MCDM 2004. Whistler, B. C. Canada
576.   Weber, P. and L. Jouffe (2006). "Complex system reliability modelling with
       Dynamic Object Oriented Bayesian Networks (DOOBN)." Reliability
       Engineering and System Safety 91(2): 149-162
577.   Weber, P., M. P, et al. (2004). Dynamic Bayesian Networks modelling the
       dependability of systems with degradations and exogenous constraints. 11th
       IFAC symposium on information control problems in manufacturing
       (INCOM’04). Salvador-Bahia, Brazil
578.   Weber, P. and M.-C. Suhner (2002). An application of Bayesian Networks to the
       Performance Analysis of a Process European Conference on System
       Dependability and Safety (ESRA 2002/lambda-Mu13). Lyon, France
579.   Weber, P., M.-C. Suhner, et al. (2001). System approach-based Bayesian
       Network to aid maintenance of manufacturing process. 6th IFAC Symposium on
       Cost Oriented Automation, Low Cost Automation. Germany
580.   Weber, P., D. Theilliol, et al. (2006). .Increasing effectiveness of model-based
       fault diagnosis: A Dynamic Bayesian Network design for decision making. 6th
       IFAC Symposium on Fault Detection, Supervision and Safety of technical
       processes. China
581.   Wellman, M. P. (1990). "Fundamental concepts of qualitative probabilistic
       networks."
582.   Whimster, W. F., P. W. Hamilton, et al. (1996). "Reproducibility of Bayesian
       belief network assessment of breast fine needle aspirates." Anal Quant Cytol
       Histol 18(4): 267-74
583.   White, S. (1996). "Decision-support systems in dentistry." J Dent Educ 60(1):
       47-63
584.   Williams, S. J., S. M. Shortell, et al. (1978). "A causal model of health services
       for diabetic patients." Med Care 16(4): 313-26
585.   Wilson, A. G. and A. V. Huzurbazar (2007). "Bayesian networks for multilevel
       system reliability
586.   " Reliability Engineering & System Safety 92(10): 1413-1420
587.   Wilson, W. I., Y. Peng, et al. (2005). "Comparison of statistical analysis and
       Bayesian Networks in the evaluation of dissolution performance of BCS Class II
       model drugs." J Pharm Sci 94(12): 2764-76
588.   Winkler, R. L. (1972). An Introduction to Bayesian Inference and Decision.
589.   Winkler, R. L. (2001). "WHY BAYESIAN ANALYSIS HASN'T CAUGHT ON
       IN HEALTHCARE DECISION MAKING." International Journal of
       Technology Assessment in Health Care 17: 56-66
590.   Wolbrechte, Bruced'Ambrosio, et al. (2000). Monitoring and diagnosis of a
       multistage manufacturing process using Bayesian networks. Artificial
       Intelligence for Engineering Design, Analysis and Manufacturing 14 (1), 53-67.

591.   Wolfle, L. M. and L. W. Bryant (1978). "A causal model of nursing education
       and state board examination scores." Nurs Res 27(5): 311-5
592.   Wong, W. K., G. Cooper, et al. (2005). "Use of multiple data streams to conduct
       Bayesian biologic surveillance." MMWR Morb Mortal Wkly Rep 54 Suppl: 63-
       9
593.   Wooff, D. A., M. Goldstein, et al. (2002). Bayesian graphical models for
       software testing. IEEE Transactions on Software Engineering, 28(5), 510 - 525

594.   Wooff, D. A. and J. M. Schneider (2006). "A Bayesian belief network for quality
       assessment: application to employment officer support." J Intellect Disabil Res
       50(Pt 2): 109-26
595.   Xiang, Z., R. M. Minter, et al. (2007). "miniTUBA: medical inference by
       network integration of temporal data using Bayesian analysis." Bioinformatics
       23(18): 2423-32
596.   Xie, Y., D. Lord, et al. (2007). "Predicting motor vehicle collisions using
       Bayesian neural network models: an empirical analysis." Accid Anal Prev 39(5):
       922-33
597.   Xu, M., G. M. Zeng, et al. (2005). "Application of Bayesian regularized BP
       neural network model for analysis of aquatic ecological data-a case study of
       chlorophyll-a prediction in Nanzui water area of Dongting Lake." J Environ Sci
       (China) 17(6): 946-52
598.   Yu, J. and X. W. Chen (2005). "Bayesian neural network approaches to ovarian
       cancer identification from high-resolution mass spectrometry data."
       Bioinformatics 21 Suppl 1: i487-94
599.   Yu, J., V. A. Smith, et al. (2004). "Advances to Bayesian network inference for
       generating causal networks from observational biological data." Bioinformatics
       20(18): 3594-603
600.   Yuan, C. and M. J. Druzdzel (2005). "Importance sampling algorithms for
       Bayesian networks: Principles and performance." Mathematical and Computer
       Modeling 43(9-10): 1189-1207
601.   Zelic, I., I. Kononenko, et al. (1997). "Induction of decision trees and Bayesian
       classification applied to diagnosis of sport injuries." J Med Syst 21(6): 429-44

602.   Zhang, R., G. McAllister, et al. (2005). "Coupling wavelet transform with
       bayesian network to classify auditory brainstem responses." Conf Proc IEEE Eng
       Med Biol Soc 7: 7568-71
603.   Zhou, Z., G. Jin, et al. (2006). Reliability Analysis of Multistate Systems Based
       on Bayesian Networks. Proceedings of the 13th Annual IEEE International
       Symposium and Workshop on Engineering of Computer Based Systems, IEEE
       Computer Society: 344-352
604.   Zhu, J., A. Jambhekar, et al. (2006). "A Bayesian Network Driven Approach to
       Model the Transcriptional Response to Nitric Oxide in Saccharomyces
       cerevisiae." PLoS ONE 1: e94
605.   Zhu, W., J. Yan, et al. (2006). "Application of Bayesian network in syndrome
       differentiation system of traditional Chinese medicine." Zhong Xi Yi Jie He Xue
       Bao 4(6): 567-71
606.   Ziv, H. and D. J. Richardson (1997). Bayesian-network confirmation of software
       testing uncertainties. ESEC
607.   Zou, M. and S. Conzen (2005). "A new dynamic Bayesian network (DBN)
       approach for identifying gene regulatory networks from time course microarray
       data." Bioinformatics 21(1): 71-9
608.   Zweig, G. (1998). Speech Recognition with Dynamic Bayesian Networks,
       University of California at Berkeley. PhD
        http://www.icsi.berkeley.edu/ftp/global/pub/speech/papers/zweig_thesis.pdf.

				
DOCUMENT INFO
Shared By:
Categories:
Tags:
Stats:
views:12
posted:6/5/2012
language:English
pages:39
handongqp handongqp
About