DC Best Practices by B4Z4B9U2


									                                AFFF Procedures

1. Prior to any AFFF testing, we will verify daily alignment check, test all station relief
   valves and test ABT's with pump running. (Usually conduct after RMD) Once they
   are sat, we commence shooting the hosereels and the sprinklers. For topside, most
   ships will schedule the AFFF sprinks prior to CMWD so that any residual AFFF is
   washed away. Flight deck testing is normally accomplished by testing each zone one
   at a time if applicable. We look for clogged nozzles (no flow, low flow, geysers,

                          AFFF Advance Preparation

2. Normally, overhead sprinklers in hangar bays or other sensitive areas are socked. If
   you will be socking nozzles; ensure this is done prior to us arriving for your
   inspection. This can be a time-consuming and dangerous evolution if working high
   in an overhead. Plan and supervise accordingly.

                             Aircraft Carrier AFFF

3. We normally clear Main space AFFF on day zero. As a reminder, for the main space
   bilge sprinklers, carriers have a memo of agreement with us to allow them to use test
   cast fittings at the bilge sprinkler control valve to perform the checks. This way you
   do not put water in the bilges. For the hosereels, most carriers have used 55 gallon
   drums to shoot the hoses into.

                                   CVN Day 0

4. Day 0:
   As soon as we complete the TLD brief, we want to move immediately into
   conducting the AFFF stations checks on the stations that affect Main Space AFFF
   Sprinks and Hosereels (approx 0800)! Our only priority on Day 0 will be to test main
   space AFFF and HALON. We will do those checks simultaneously on Day 0.

                             Air Systems Procedure

5. The air systems are inspected basically directly off the ASA checksheets. However
   with that said, when we walk aboard prior to getting underway, we will do a quick
   look at the installed systems. At this point we are only looking to ensure that the
   system looks like it is in proper working order (relief valves lock wired and tagged,
   sat moisture indicators, air aligned, etc.)

6. For the actual inspection portion, you will fill up a bottle from each BAC or
    HPFA/ABPA and EBAC. At this point we are observing for proper operation (no
   air or fuel leaks, gauges calibrated and stenciled, timing of filing bottles, etc). Once
   we have observed all the stations filling bottles, we will watch you perform the air
   quality analysis on them.
7. Drain six 45 minute SCBA bottles down to 500 psi prior to our arrival. An hour
   or so before we conduct the HPFA/ABPA testing, drain remaining pressure
   from the six SCBA bottles to minimize the chance for condensation to develop in
   the bottles.

8. Avoid placing the EBAC fill hoses on the deck to minimize chance of breaking
   the relief valves lock wires.

9. Ensure the operator of the HPFA/ABPA are familiar with the PMS check 5519/018

                                   SCBA Packs

10. Make sure your SCBA cylinders are all above the required 4000 psi, have operable
    voice amps (required), and operable HUDs (if equipped). You would not believe
    how many ships we show up to inspect that have multiple packs less than 4000 psi
    and with dead batteries in their voice amps. This is an attention to detail and
    preparation item. Aside from these items, other things we look for IAW PMS are air
    leaks, operational regulators, harness condition, etc. Pay attention to your SCBAs,
    we look at 100% of them and they are life-saving devices.


11. For the Halon shoot, tag-out everything you normally would do as per PMS, except
    the primary and reserve CO2 actuation bottles furthest from the time delay. We will
    conduct a visual inspection at both primary and reserve bottles furthest from the time
    delay and make a determination which one to actuate. We do not expect to see both
    primary and reserve bottles actuated unless one fails, then we’ll want to see the other.

12. Verify 5lb CO2 bottles are installed properly. *Especially after testing system*

13. Ensure all hoses are tagged with hose assembly identification tags.

14. Ensure halon cylinder hoses are in good condition:
    a. Large areas of paint are unsat.
    b. Broken wire strands (20 random or 10 adjacent wires are unsat).
    c. Corrosion on hose (greater than 1 square inch is unsat).
    d. Permanent deformation or bulging is unsat.

15. Cylinder securing brackets/fasteners are not short studded/loose/missing.

16. Ensure all activation station indicators are working.

17. Ensure bells are properly mounted, so the bell plunger makes contact during
18. Have a list or diagram showing the location of all bells, indicators, actuation stations
    and sirens.

19. Ensure proper time delays are installed for main spaces and non main spaces. (60
    seconds main spaces and 30 seconds non main spaces)

20. Have a list with the location of all vent dampers that shut down automatically, if

21. Ensure vent motors operate properly. Ventilation shuts down when halon is activated
    and restarts after system has been reset.

                                  Main Drainage

22. Here's how Main Drainage will go. There'll be at least two INSURV inspectors
    starting with the most forward drainage space of the ship. One inspector will be on
    the DC deck observing remote operation of all drainage valves and/or eductors (if
    applicable) from a MVHC station or whatever means you have to operate valves
    remotely. The other inspector will be in-space observing each valve locally to ensure
    it operates. Once each remotely operated drainage valve has been assessed, we'll want
    to see you operate the eductor for that space (if applicable). Please follow PMS Q-2R
    and A-9 with the exception of tagging-out your bulkhead isolation valves to assess
    the leakage of your overboard and suction check valves. This test of the eductor will
    only be sea-to-sea operation.

23. Once you let us know the ship is >50 NM from land, the demo will consist of
    operating your most forward eductor taking suction on your most after space serviced
    by the main drain system, or vice versa if you like. Also, hand us a copy of your
    main drain system EOSS drawing for us to keep track.

24. Make sure your MVHC stations (if equipped) have sufficient oil levels in reservoirs.

25. Provide INSURV inspectors with copies of the EOSS main drainage diagrams so we
    can better understand the layout of your system and track discrepancies.

26. Have a team of valve operators available so that the sailors can alternate operation of
    valves. Having one sailor operate every one of your drainage valves is physically
    exhausting and more time consuming.

                               Secondary Drainage
27. Secondary drainage will be conducted just like main drainage. We typically see a lot
    of neglect on secondary drainage eductors and associated valves. Because they are in
    remote spaces and utilized less frequently, they tend to be in much poorer condition
    (seized valves, inop remote, etc.)
                          Tank Void Inspection Process

28. We require ship's force to open one ballast tank (Amphibs only), one list control tank
    (CVN’s only), one potable water tank and one void for us to inspect at a minimum.
    We want to see the tank as is, not after it has been cleaned. (after underway portion).
    We will normally bring NNSY Structural Engineers to inspect the tanks and voids so
    a marine chemist is required to certify the tanks.

29. The chain locker is inspected first thing on day 1 by the INSURV Deck inspectors,
    not by DC. The DCA must have this tank gas free early that morning.
30. The Aviation inspectors expect ship’s force to tag-out and present one JP-5 storage
    and service tank (ensure they're both pumped down to 50% if possible). No gas free
    is required as the inspectors will not break the plane of the tank top and will only look
    down with a flashlight.

                             Remote Firemain Valves

31. We will have you operate all of your remote-operated firemain loop valves (not
    risers). Typically we have one inspector at the remote operating station and two
    inspectors out watching local operation of the valve as it is cycled. The local teams
    normally split up port and starboard or whatever is the most efficient manner to
    inspect the valves on your ship. Make sure the ship’s force personnel escorting our
    inspectors for local observation of the valves know where the valves are located. We
    have experienced many delays in the past as sailors call in over the radio looking for
    help on where to find a valve or to get a space unlocked that contains a firemain
    valve. These issues should all be resolved prior to your inspection. Also provide us
    copies of your simplified firemain system diagram and/or a listing of all valves to be

                                DCPO Procedures

32. There is not much to present for the DCPO division. We will look at your portable
    gear (C02 bottles, PKP bottles, fire stations, etc) in the main spaces when we do our
    safety walk-thru. Non main space DCPO gear is usually inspected during WTD


33. If your IPDS is in Lay-up, it will not be inspected. Depending on your deployment
    schedule, you will be required to have the CBR inventory IAW applicable AEL. We
    show up to many ships that do not possess a current AEL for their required CBR gear
    and then are unable to download it during the inspection. Resolve these issues early
    with your waterfront CBR reps.

34. CMWD is a coordination intensive demo. Make sure that all of your other required
    topside checks (e.g. shore power breaker checks, comms IMI testing) are complete
    prior to shooting CMWD. Make sure you have sufficient firemain available to
    operate all CMWD zones simultaneously. We have seen ships unable to achieve
    minimum firemain pressure (95 psi) during full CMWD operations, but at the same
    time they were trying to operate main space eductors. Not smart. Have two ship’s
    force personnel topside with a radio (inside a plastic bag) and a laminated drawing of
    all of your topside nozzles that they can mark up with a grease pencil as our
    inspectors point out discrepancies. We will send two inspectors topside during the
    demo (provide two sets of quality XL rain gear) and will normally walk fore to aft
    lighting off one zone at a time looking for low flow/no flow nozzles. Once the length
    of the ship has been walked, we will want to see the entire system lit off at once and
    walk the length of the ship again looking for coverage and sufficient pressure.

                         CPS Decontamination Station

35. Verify signage is posted throughout the stations: i.e. “CASUALTY DECON

36. Know the status of DECON station inventory.

                               CPS System Check

37. Ensure CPS Aerosol Penetration Certification Letter/Message is current.

38. CPS PMS log is current and correct.

39. Inspect CPS fan room dirty side for obstacles.

40. Inspect CPS fan room clean side for obstacles.

41. Ensure alarms and indicators are working properly.

42. Ensure magnahelic gauges transducers/Detroit switches are calibrated.

43. Ensure warning stickers installed in CPS fan dirty side room IAW NSTM 470.

44. Document CPS discrepancies and attempt to repair them.
                      NON-CPS Decontamination Stations

45. Inspection of conventional decon stations consists of all required signage indicating
    the most direct route to the nearest access opening of the decon station. The actual
    station entrance must be marked at each door entrance if more than one.

46. Outer Clothing Undressing Areas must have relay lantern operational, functional deck
    drains, 120W overhead lights installed and rigged for red light capability.

47. Inner Clothing Undressing Areas must also have all required signage and posted
    procedures IAW the ships AEL and PMS, as well as an operational test of all shower

48. Attendants Station (Control Area) inspection will include verifying the shower gage
    is red lined at 35 psi and that the associated shower piping are labeled correctly. A
    label instruction plate stating "Shower 30 seconds at 35 psi" must be on station.

49. Conventional Decon Station Inventory inspection will be conducted for each decon
    locker as per your ship's AEL. Typically this is deemed an unnecessary check and
    consequently takes a lot of hits for missing inventory items. We will expect to see the
    ship's total complement of HTH as per your AEL.

                              Water Tight Closures

50. This is normally done with 2 sets of DCPO’s. We will have 2 teams out chalk testing
    the doors, hatches and scuttles. This is a quick and dirty check. We observe chalk
    test and inspect hardware. There is no time for adjustments. It is what it is. If the
    gasket is gapped, don’t bother chalking the door, it is not water tight.


51. The firemain open and inspect photos are required to be sent to us prior to our arrival
    (within 90 days of the MI); however, we will accept the photos the morning of the
    MI. If it is not done prior to our arrival we will require you to drop a valve during the
    MI. This can be very painful for the DC Shop as they are very busy during the MI.

                       Freshwater Firefighting Hose Reels

52. If equipped, we will inspect your FWFF hose reels in a manner very similar to your
    AFFF hose reels. We will look for a valid hydro on your hose, leaks from the nozzle
    or reel, remote operation of your FWFF pump, operation of all available patterns
    from the nozzle, etc. Hose reels can be shot into a trash can or through a convenient
    overboard discharge fitting. Overboard fittings are preferred as less of a mess is
    produced and you are able to more fully demonstrate the nozzle patterns at full
                 Damage Control Emergency Diesel Generator

53. Damage Control emergency diesel generator does not leak oil, fuel or exhaust.

54. Generator is properly aligned for operation prior to inspectors arriving on station.

55. Generator can provide power for 15 minutes with a minimum of 25 amp loads (3 box

56. Ensure DC emergency diesel generator has sufficient fuel and oil prior to operation.

                                      Box Fan

57. Ensure box fan operates properly without excessive vibration.

58. Ensure box fan has been electrically safety checked.

59. Ensure box fan screen guard with smaller spacing is on the blade side, preventing
    safety hazard.

               Portable Electric Access Rescue System (PEARS)

60. Ensure inventory and visually inspect P-16 Rescue system for damages.

61. Ensure inventory power pack accessories.

62. Ensure inventory P-16 attachments.

             Portable Hydraulic Access Rescue System (PHARS)

63. Ensure inventory for accessories.

64. Inspect and test operate diesel generator without PHARS accessories.

65. Ensure PHARS accessories operate.

                                  Ballast System

66. Verify all required publications, drawings and documents are maintained in ballast
    control. i.e. ship’s information book (SIB), ballast bill, and BOSS/EOSS, etc.

67. Document nonoperational equipment for ballast operations. i.e. vent/blow valves,
    relief valves, deballast compressors (DBACS), etc.
68. Keep an updated list of ballast system relief valves pop test data and ensure sailors
    know where relief valves are located and are not obstructed before INSURV

69. Verify remote operation of equipment; DEBACs, HPUs, vent/blow valves, etc.

70. Ensure ballast control station indicators lights are operating. i.e. console, ventilation
    systems, etc.
71. Know the ship’s specific requirements for ballast/deballast, as far as time and depth
    of water.

                          Overboard Discharge Fittings

72. Ensure proper signage is posted at each overboard discharge valve.

73. Have a list and know the location for overboard discharge valves.

74. Inspect and verify spanner wrenches are on station and in working order.

75. Ensure overboard discharge valve caps have securing chains attached and are long
    enough to remove cap.

76. Validate overboard is marked as a DC fitting on space CCOL.

77. Ensure the coupling gaskets are in good condition.

78. Ensure there is not excessive corrosion in overboard hull transition piping.

                             Explosion Proof Lighting

79. These fixtures will be inspected during the Halon/FM-200/HFP testing. We will
    visually inspect the globes and then attempt to turn them by hand testing for tightness.
    A total number of fixture discrepancies will be tallied for each space. The following
    will be inspected:
    a. Is the globe loose and/or missing? If so, then the fixture is not explosion proof.

   b. Does the globe have a seal?

   c. Is the correct explosion proof bulb installed? If not, then the fixture is not
      explosion proof.

   d. Is the globe discolored or damaged? If so, then it's unsat.
                           FFG SSDG Enclosure Doors

80. This will consist of a basic inspection of the entire door and associated components
    when the SSDG is shut down. The following will be inspected on every SSDG
    a. Is the door properly aligned in the frame and is the gasket worn or have paint on

   b. Is the observation window cracked or is the door frame welds cracked?

   c. Is there any missing hardware such as screws, safety latches, knobs?

   d. Is there any sign of light leakage around the periphery of the door?

   e. Does the door close and latch properly?

                                   Heat Detectors

81. Conduct a visual inspection, looking for proper mounting and any loose/exposed
    wires. We'll check to ensure each detector activates a light/audible alarm at the DC
    console and that each audible alarm extinguished when acknowledged. Due to the
    large amount of detectors on a ship, the inspector will select a proper amount of
    detectors to test in order to get strong representative sample.

82. Did each heat detector alarm condition occur within 5-15 seconds? Did the Power
    Control Panel (PCP) red alarm LED flash and ZM red "alarm" LED flash? There
    should be an associated horn for each detector and we'll expect to see it stop when

83. It's important to ensure that there's at least one thermostat for each 250 square feet of
    deck area, or fraction thereof and not less than two thermostats per compartment.
    We'll verify that all thermostats within a compartment are wired in parallel.

                                  Flame Detectors

84. During an operational test we'll expect to see that the flame detector light illuminated
    when a flashlight was used IAW PMS. Also, did the flame detector alarm in CCS
    and/or the DC console as well as the Interface Terminal Box (ITB) illuminate. Due to
    the large amount of detectors on a ship, the inspector will select a proper amount of
    detectors to test in order to get strong representative sample.

                                  Flood Detectors

85. We'll look to see if the float switch is broken, pitted, corroded, and if the drain holes
    are obstructed. Do the stuffing tubes have cuts or deterioration? Is the activation
    level approx 2 inches above the deck (for dry spaces)?
86. For bilge flooding switches, is the switch approx 6 inches above normal level of
    residual bilge water? Switches should be mounted on hardware that allows total
    adjustment of 8 inches (in 2 inch increments). Did the bilge alarms activate when the
    float was raised at the DC console, QD locations and did they reset when the float
    was lowered? Due to the large amount of detectors on a ship, the inspector will select
    a proper amount of detectors to test in order to get strong representative sample.

                                 Smoke Detectors

87. For DDGs, did a message appear on the plasma screen? Did smoke sensor alarm in
    CCS at the DC console and did the alarm acknowledge.

88. For Smoke sensors on LHDs, did the alarm activate at switchboard on Zone Module
   applicable for detectors? Also, did the audible horn wail and the red LED alarm
   energize? Did the horn silence when the PCP pushbutton was depressed? Due to the
   large amount of sensors on a ship, the inspector will select a proper amount of sensors
   to test in order to get strong representative sample.

                              Balanced Joiner Door

89. Does the door operate freely and no binding present on frame sides or door sill?

90. Does the door close smoothly and completely?

91. Does the door close within 5-10 seconds with 6-8 as target time?

92. Ensure the door gasket is not cracked or hard and paint free.


93. Are the EEBDs within shelf life periodicity of 15 years?

94. Are EEBDs in a mounted stowage box and clearly marked with photo luminescent

95. Is the tamper-indicating ball intact?

96. Is the gage needle in the green?


97. Ensure that gages will be calibrated to and through the inspection dates.

98. Ensure the relief valve return line flow indicator switch (Detroit switch) is calibrated.
99. DC Deck panels (remote control panel, RCS) inspect for loss of comms with
    equipment and equipment faults. The need to reset often without loss of power
    indicates possible communication issues within the system.

100. Put hands on all fasteners while inspecting for tightness. Particularly on the pump
   skid as vibration can cause fasteners to loosen. Tighten all fasteners IAW the
   techman or NSTM 075.

To top