DE-THI-THU-THPT-NGUYEN-TRUNG-THIEN-HA-TINH-2012

					 SỞ GD & ĐT HÀ TĨNH                                    ĐỀ THI THỬ ĐẠI HỌC LẦN I NĂM 2012
TRƯỜNG THPT NGUYỄN TRUNG THIÊN                                  Môn Thi : TOÁN – Khối A,B
                                              Thời gian làm bài : 180 phút (không kể thời gian giao đề)
I.PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7điểm)
Câu I (2 điểm) Cho hàm số y = x 4 - 2mx 2 + m - 1 (1) , với m là tham số thực.
   1.Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m = 1 .
   2.Xác định m để hàm số (1) có ba điểm cực trị, đồng thời các điểm cực trị của đồ thị tạo thành một
tam giác có bán kính đường tròn ngoại tiếp bằng 1 .
 Câu II : ( 2 điểm)
 Giải các phương trình
    1. 2 cos 2 x + 2 3 sinxcosx +1 ­ 3 3 cosx =3sinx
                                    3
    2. (3 x + 1) 2 x 2 - 1 = 5 x 2 + x - 3
                                    2
                                         e
                                              log3 x
                                                 2
Câu III : (1 điểm). Tính tích phân I = ò              dx
                                      1 x 1 + 3ln 2 x
Câu IV : (1 điểm) Cho hình chóp tứ giác S.ABCD có đáy là hình chữ nhật với SA vuông góc với đáy,
G là trọng tâm tam giác SAC, mặt phẳng (ABG) cắt SC tại M, cắt SD tại N. Tính thể tích của khối đa
diện MNABCD biết SA=AB=a và góc hợp bởi đường thẳng AN và mp(ABCD) bằng 300 .
 Câu V: (1 điểm) Cho x, y, z > 0 và x + y + z ≤ xyz . Tìm giá trị lớn nhất của biểu thức.
                                       1          1         1
                               P= 2         + 2        + 2
                                    x + 2 yz y + 2 zx z + 2 xy
II.PHẦN RIÊNG (3 điểm) Thí sinh chỉ được làm một trong hai phần(phần A hoặc phần B)
A.Theo chương trình chuẩn
Câu VIa (2 điểm).
1.(1 điểm)Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): x2 + y2 ­ 2x ­ 2my + m2 ­ 24 = 0 có
tâm I và đường thẳng D: mx + 4y = 0. Tìm m biết đường thẳng D cắt đường tròn (C) tại hai điểm phân
biệt A,B thỏa mãn diện tích tam giác IAB bằng 12.
                                     log2 x   2log x
  2. (1 điểm) Giải bất phương trình 2 2 + x 2 - 20 £ 0
Câu VIIa (1 điểm). Có bao nhiêu số tự nhiên có 4 chữ số khác nhau và khác 0 mà trong mỗi số luôn
luôn có mặt hai chữ số chẵn và hai chữ số lẻ.
  B.Theo chương trình nâng cao
 Câu VIb (2 điểm)
 1. (1 điểm) Trong mặt phẳng tọa độ Oxy cho tam giác ABC, với A(2;-1) , B(1;- 2) , trọng tâm G của
 tam giác nằm trên đường thẳng x + y - 2 = 0 . Tìm tọa độ đỉnh C biết diện tích tam giác ABC bằng
 13,5     2. (1 điểm):Giải phương trình:
                                                                          x +1
                                                                        2
                          ( 9 x - 2.3 x - 3) log 3 ( x - 1) + log 1 27 = 9 2 - 9 x
                                                                  3
                                                                        3
 Câu VIIb (1 điểm) Có bao nhiêu số tự nhiên có 5 chữ số khác nhau mà trong mỗi số luôn luôn có mặt
hai chữ số chẵn và ba chữ số lẻ.
                                                        ­Hết­
     (Thí sinh không được sử dụng tài liệu .Cán bộ coi thi không được giải thích gì thêm.)
         ĐÁP ÁN Toan AB
Câu I     1.(1 điểm). Khi m = 1 hàm số trở thành: y = x 4 - 2 x 2                                           0,25
(2đ)          · TXĐ: D=R
                                                                                 éx = 0
             ·        Sự biến thiên: y ' = 4 x3 - 4 x = 0 Û 4 x ( x 2 - 1) = 0 Û ê
                                                                                 ë x = ±1
                       yCD = y ( 0 ) = 0, yCT = y ( ±1) = -1                                                0,25
             ·    Bảng biến thiên
                  x    ­¥                   ­1                      0                    1             +¥
                                                                                                            0,25
                 y’                   -      0         +            0        -                0    +



              y            +¥                                       0                                  +
                                            ­1                                                ­1

             ·        Đồ thị
                                                                        8




                                                                        6




                                                                        4




                                                                        2


                                                                                                            0,25
                                             ­10           ­5                    5       10




                                                                        ­2




                                                                        ­4




                                                                        ­6




                                                                        ­8




                                                                   éx = 0
             2. (1 điểm) y ' = 4 x3 - 4 mx = 4 x ( x 2 - m ) = 0 Û ê 2
                                                                   ëx = m                                   0,25
             Hàm số đã cho có ba điểm cực trị Û pt y ' = 0 có ba nghiệm phân biệt và y ' đổi dấu
             khi x đi qua các nghiệm đó Û m > 0
             · Khi đó ba điểm cực trị của đồ thị hàm số là:                                                 0,25
                                  (                        ) (
             A ( 0; m - 1) , B - m ; -m 2 + m - 1 , C m ; - m 2 + m - 1              )
                            1                                                                               0,25
             ·                yB - y A . xC - xB = m 2 m ; AB = AC = m 4 + m , BC = 2 m
                      S V ABC =
                            2
                                                                                 ém = 1                     0,25
             ·        R=
                         AB. AC.BC
                                    =1Û
                                                   (
                                             m4 + m 2 m         )
                                                          = 1 Û m - 2m + 1 = 0 Û ê
                                                                 3

                          4SV ABC                 2
                                                4m m                             êm = 5 - 1
                                                                                 ê
                                                                                 ë      2
Câu II    2 cos 2 x + 2 3 sin x cos x + 1 = 3(sin x + 3 cos x )
(2đ)
          Û 2 + cos 2x + 3 sin 2x = 3(sin x + 3 cos x)
                  1          3             1         3
          Û 2 + 2( cos 2x +    sin 2x) = 6( sin x +    cos x)
                  2         2              2        2
                                                                                                            0,5
                         p            p
        Û 2 + 2cos(2x - ) = 6cos(x - )
                         3            6
                       p           p               p                 p                                     0,25
        Û 1 + cos(2x - ) = 3cos(x - ) Û 2cos 2 (x - ) = 3cos(x - )
                       3           6               6                 6
          é        p
          êcos(x - 6 ) = 0          p p              2p                                                    0,25
        Ûê                     Û x - = + kp Û x =       + kp , k Î Z
                   p 3
          êcos(x - ) = (loai)        6 2              3
          ê
          ë        6     2
                                                            3
       Giải phương trình : (3 x + 1) 2 x 2 - 1 = 5 x 2 +      x-3
                                                            2
                                                                                                           0,5
       PT Û 2(3 x + 1) 2 x 2 - 1 = 10 x 2 + 3x - 6
       2(3 x + 1) 2 x 2 - 1 = 4(2 x 2 - 1) + 2 x 2 + 3 x - 2 . Đặt t = 2 x 2 - 1(t ³ 0)
       Pt trở thành 4t 2 - 2(3x + 1)t + 2 x 2 + 3 x - 2 = 0
       Ta có: D' = (3x + 1) 2 - 4(2 x 2 + 3 x - 2) = ( x - 3) 2
                                                        2x -1      x+2
       Từ đó ta có phương trình có nghiệm : t =               ;t =
                                                          2         2
                                                                         ì - 1 + 6 2 + 60 ü                0,5
       Thay vào cách đăt giải ra ta được phương trình có các nghiệm: x Î í        ;       ý
                                                                         î 2          7 þ
Câu                                     æ ln x ö
                                                3
                                                                                                           0,25
III        e        3
                log 2 x
                                    e   ç      ÷             1
                                                                 e
                                                                     ln 2 x.     ln xdx
                                          ln 2 ø
(1đ)   I =ò                 dx = ò è                 dx = 3 ò                  .
           1 x 1 + 3ln x
                        2
                                    1 x 1 + 3ln x
                                                 2         ln 2 1 1 + 3ln x  2      x
                                           1                  dx 1                                         0,25
       Đặt 1 + 3ln 2 x = t Þ ln 2 x = (t 2 - 1) Þ ln x. = tdt . Đổi cận …
                                           3                   x 3
                                                     1 2                                                   0,25
                  e           3
                          log 2 x             1
                                                   2  ( t - 1) 1          1
                                                                               2

       Suy ra I = ò                   dx = 3 ò 3               . tdt =      3  ò ( t - 1) dt
                                                                                    2

                  1 x 1 + 3ln x
                                  2         ln 2 1       t      3      9ln 2 1
                       1 æ1 3 ö
                                        2
                                               4                                                           0,25
                 =      3  ç 3 t - t ÷ = 27 ln 3 2
                   9 ln 2 è          ø1
       + Trong mp(SAC) kẻ AG cắt SC tại M, trong mp(SBD) kẻ BG cắt SD tại N.
                                                         S
Câu    + Vì G là trọng tâm tam giác ABC nên dễ có
IV     SG 2
(1đ)       = suy ra G cũng là trọng tâm tam giác SBD.
        SO 3
        Từ đó suy ra M, N lần lượt là trung điểm của
       SC, SD.                                                                                     N

                                     1           1
       + Dễ có: VS . ABD = VS . BCD = VS . ABCD = V .                                                      0,25
                                     2           2
                                                                             M
        Theo công thức tỷ số thể tích ta có:                         G
                                                                          A                                 D

        VS . ABN SA SB SN       1 1            1
                =  . .    = 1.1. = Þ VS . ABN = V
        VS . ABD SA SB SD       2 2            4                                               O



                                                                  B                                    C
        VS .BMN SB SM SN                1 1 1                  1
                =     .      .    = 1. . = Þ VS . ABN = V
        VS . BCD SB SC SD               2 2 4                  8
                                                        3
        Từ đó suy ra: VS . ABMN = VS . ABN + VS . BMN = V .                                                                                        0,25
                                                        8
                        1
        + Ta có: V = SA.dt ( ABCD ) ; mà theo giả thiết SA ^ ( ABCD ) nên góc hợp bởi AN với
                        3
        mp(ABCD) chính là góc ÐNAD , lại có N là trung điểm của SD nên tam giác NAD cân tại
                                                                 SA
        N, suy ra ÐNAD = ÐNDA =300 Suy ra: AD =                         =a 3.
                                                               tan 30 0
                                                                                                                                                   0,5
                     1                      1                3 3
        Suy ra: V = SA.dt ( ABCD) = a.a.a 3 =                 a .
                      3                     3               3
                                                                           3  5 5 3a 3
        Suy ra: thể tích cần tìm là: VMNABCD = VSABCD - VSABMN = V - V = V =
                                                                           8  8   24
Câu V   Từ giả thiết ta có xyz ≥ x + y + z ≥ 3        3 xyz              3
                                                              Û (xyz) ≥ 27.xyz Û xyz ≥ 3 3 .                                                       0,25
(1đ)
        Áp dụng BĐT Cauchy ta có
        x2 + yz + yz ≥ 3 3 ( xyz ) 2 ;                   y2 + zx + zx ≥ 3 3 ( xyz ) 2 ;                             z2 + xy + xy ≥ 3 3 ( xyz ) 2   0,25
                                    1                     1                1                    1                     1             1
        Từ đó ta có P £                     +                     +                   =                     £                   =                  0,25
                            3
                          3 ( xyz )     2        3
                                                3 ( xyz )     2        3
                                                                      3 ( xyz )   2       3
                                                                                              ( xyz )   2       3
                                                                                                                    (3 3)   2       3
                            1                 ìx = y = z
        Từ đó ta có Max P =     đạt được khi í                  Û x = y = z = 3.
                            3                 î x + y + z = xyz                                                                                    0,25
Câu     Đường tròn (C) có tâm I(1; m), bán kính R = 5.                                                                                             0,25
VI
(2đ)                                                                                                                      I
                                                                                                                     5
                                                                                                                                            D
                                                                                                                A         H             B
        Gọi H là trung điểm của dây cung AB.
                                                                                                  | m + 4m |                 | 5m |                0,25
        Ta có IH là đường cao của tam giác IAB. IH = d ( I , D) =                                                     =
                                                                                                    m 2 + 16                m 2 + 16
                                                (5m ) 2                 20
        AH =     IA2 - IH 2 = 25 -                       =                                                                                         0,25
                                                m 2 + 16        m 2 + 16
        Diện tích tam giác IAB là S DIAB                 = 12 Û 2S DIAH = 12
                                                        é m = ±3                                                                                   0,25
        Û d ( I , D ). AH = 12 Û 25 | m |= 3( m + 16) Û ê     2
                                                               16
                                                        êm = ±
                                                        ë       3
                                                     2
        Điều kiện: x> 0 ; BPT Û 24 log2 x + x 2log 2 x - 20 £ 0                                                                                    0,25
        Đặt t = log 2 x . Khi đó x = 2t .
                                2       2                                      2                                                                   0,25
        BPT trở thành 42 t + 22 t - 20 £ 0 . Đặt y = 22 t ; y ³ 1.
        BPT trở thành y2 + y ­ 20 £ 0 Û ­ 5 £ y £ 4.                                                                                               0,25
                                                         2
        Đối chiếu điều kiện ta có : 2 2 t £ 4 Û 2t 2 £ 2 Û t 2 £ 1 Û ­ 1 £ t £ 1.
                                                                                                                                                   0,25
                                     1
       Do đó ­ 1 £ log 2 x £ 1 Û       £x£2
                                     2
Câu                                       2
       Từ giả thiết bài toán ta thấy có C 4 = 6 cách chọn 2 chữ số chẵn (vì không có số 0)và
VII                                                                                                           0,5
       C 52 = 10 cách chọn 2 chữ số lẽ => có C 52 . C 52 = 60 bộ 4 số thỏa mãn bài toán
(2đ)
                                                                       2
       Mỗi bộ 4 số như thế có 4! số được thành lập. Vậy có tất cả C 4 . C 52 .4! = 1440 số                    0,5
       . Vì G nằm trên đường thẳng x + y - 2 = 0 nên G có tọa độ G = (t ; 2 - t ) . Khi đó
       AG = (t - 2;3 - t ) , AB = ( -1;-1) Vậy diện tích tam giác ABG là                                      0,5

            1                                 1                                  2t - 3
       S=
            2
                            (
              AG 2 . AB 2 - AG. AB   )2
                                          =
                                              2
                                                   [                    ]
                                                2 ( t - 2) 2 + ( 3 - t ) 2 - 1 =
                                                                                   2
       Nếu diện tích tam giác ABC bằng 13,5 thì diện tích tam giác ABG bằng 13,5 : 3 = 4,5 . Vậy              0,5
        2t - 3
               = 4,5 , suy ra t = 6 hoặc t = -3 . Vậy có hai điểm G : G1 = (6;-4) , G 2 = (-3;-1) . Vì G là
          2
       trọng tâm tam giác ABC nên xC = 3 xG - ( xa + xB ) và yC = 3 yG - ( ya + yB ) .
       Với G1 = (6;-4) ta có C1 = (15;-9) , với G 2 = (-3;-1) ta có C2 = (-12;18)
           ·   ĐK: x > 1
           ·   Với ĐK trên phương trình đã cho tương đương                                                    0,25



                                                                                                              0,5
                                                                   .
                                                                                                              0,25

       Vậy phương trình đã cho có một nghiệm :
Câu    Từ giả thiết bài toán ta thấy có C 52 = 10 cách chọn 2 chữ số chẵn (kể cả số có chữ số 0
VII                                                                                                           0,5
       đứng đầu) và C 53 =10 cách chọn 2 chữ số lẽ => có C 52 . C 53 = 100 bộ 5 số được chọn.
(1đ)
       Mỗi bộ 5 số như thế có 5! số được thành lập => có tất cả C 52 . C 53 .5! = 12000 số.
                                                                         1    3
       Mặt khác số các số được lập như trên mà có chữ số 0 đứng đầu là C 4 .C 5 .4! = 960 . Vậy có
                                                                                                              0,5
       tất cả 12000 – 960 = 11040 số thỏa mãn bài toán

				
DOCUMENT INFO
Shared By:
Tags:
Stats:
views:136
posted:4/17/2012
language:Vietnamese
pages:5