Fall 2011 Final Proposal

Document Sample
Fall 2011 Final Proposal Powered By Docstoc
					                             SEC
        Saluki Engineering Company




                             Proposal for:
                            F11-78-MOON
                      SIUC Moonbuggy Team


                             Submitted:
                           December 8, 2011


Team members:                                 Technical Advisor:
Katie Damron-Stokes (PM)                      Dr. Tsuchin Chu
Laura Bickers
Jonathan Beaven
Lisa Dohn
Kaleb Hartman
                                                                   1-1
November 1, 2011

                                                      Dr. Chu Manager of Manager of
Saluki Engineering Company                            Mechanical Engineering Projects
Southern Illinois University                          Southern Illinois University
Carbondale, IL                                        Carbondale, IL
618-525-3924                                          618-452-7003
Email: katied-s@hotmail.com                           Email: tchu@siu.edu



Dear Dr. Chu:

       In response to the design request for Saluki Engineering Company to create a
Moonbuggy for competition at the NASA’s 2012 Great Moonbuggy Race we propose the
following design. Thank you for considering our design for competition.

       The Moonbuggy is to be simple and light weight. The overall design consists of a single
rail chrome-moly frame with Rohloff transmission systems, an under mount steering design,
front shocks and leaf spring seat suspension for two forward facing drivers, disc brakes, and
fully functioning control panel.

       The upgraded transmission systems should eliminate the past problems our team has
encountered. The overall reduction in weight should allow the drivers to navigate the course with
more ease. The electrical components should assist the communication between the drivers and
the rest of the team at competition.

If there are any questions or concerns with this Moonbuggy design please contact our team via
katied-s@hotmail.com or by phone (618)525-3914.




Thank you for reviewing our design proposal and giving us the opportunity to compete at a
NASA sponsored event.

Sincerely,

Katie Damron-Stokes, PM



                                                                                                2-1
Executive summary:
       Saluki Engineering Company (SEC) proposes to build a Moonbuggy for Engineering

Innovations to compete in the NASA Great Moonbuggy race 2012. The Moonbuggy design will

focus on a lightweight durable design with electronic additions. The orientation will be the driver

and rider both facing forward in a tandem design. 4130 Chrome-Moly steel was the chosen

material construction due to its wide acceptance in racing frames in motorsports as well as its

light weight and easy fabrication properties.


       The Moonbuggy design was broken down into five subsystems to aid in splitting the

workload. The central subsystem is the frame since it supports the entire buggy. The frame will

be composed of rectangular and square tubing and be of a single central rail design, with

reinforcement under the seats and around the suspension. To overcome the demanding obstacles

on the race course, the Moonbuggy will feature an independent wishbone suspension in the front

and a leaf spring style suspension in the back. The power train will consist of two Rohloff hub

transmissions, one per person. Both transmissions will be linked to the front axle for a front drive

only design. The steering will have separate lever steering as well as a steering damper

incorporated to improve feel. The buggy will have a GPS system that will transmit current

location and speed back to the pit area. It will also have a camera to capture the video of the race

in real time to be analyzed to make improvements for the second day’s race.


       Design and fabrication of the Moonbuggy will be split between the members of the senior

design team, with each member working in their area of expertise. The goal is for the

Moonbuggy to be completely built a month before the competition on April 13, 2012. The last

month will consist of testing to ensure proper operation during the race. The cost estimate for

this design is $3177.33.


                                                                                                  3-1
Non-Disclosure Statement

The information provided in or for this proposal is the confidential, proprietary property of the

Saluki Engineering Company of Carbondale, Illinois, USA. Such information may be used

solely by the party to whom this proposal has been submitted by Saluki Engineering Company

and solely for the purpose of evaluating this proposal. The submittal of this proposal confers no

right in, or license to use, or right to disclose to others for any purpose, the subject matter, or

such information and data, nor confers the right to reproduce, or offer such information for sale.

All drawings, specifications, and other writings supplied with this proposal are to be returned to

Saluki Engineering Company promptly upon request. The use of this information, other than for

the purpose of evaluating this proposal, is subject to the terms of an agreement under which

services are to be performed pursuant to this proposal.




                                                                                                      4-1
Table of Contents

EXECUTIVE SUMMARY:                       3

NON-DISCLOSURE STATEMENT                 4

INTRODUCTION                             1

LITERATURE REVIEW TEAM # 78 MOONBUGGY    2

PROJECT DESCRIPTION                     19

BASIS OF DESIGN                         20

PROJECT SPECIFICATIONS                  21

TECHNICAL DESCRIPTIONS                  22

PROJECT ORGANIZATION CHART              25

ACTION ITEM LIST                        26

TIMELINE                                27

CONTRACT PRICING                        27

LEGALESE                                27

RESOURCES AND PARTS LIST                27

VALIDITY STATEMENT                      28

REFERENCES                              28

APPENDIX A                              31
RESUMES                                 31

APPENDIX B                              39
COMPETITION RULES                       39

APPENDIX C                              46




                                        5-1
Table of Lists and Figures
Figure 1 ......................................................................................................................................................... 3
Figure 2 ......................................................................................................................................................... 4
Figure 3 ......................................................................................................................................................... 5
Figure 4 ......................................................................................................................................................... 5
Figure 5 ......................................................................................................................................................... 7
Figure 6 ......................................................................................................................................................... 8
Figure 7 ......................................................................................................................................................... 9
Figure 8 ....................................................................................................................................................... 10
Figure 9 ....................................................................................................................................................... 10
Figure 10 ..................................................................................................................................................... 11
Figure 11 ..................................................................................................................................................... 12
Figure 12 ..................................................................................................................................................... 12
Figure 13 ..................................................................................................................................................... 13
Figure 14 ..................................................................................................................................................... 13
Figure 15 ..................................................................................................................................................... 14
Figure 16 ..................................................................................................................................................... 15
Figure 17 ..................................................................................................................................................... 17
Figure 18 ..................................................................................................................................................... 18
Figure 19 ..................................................................................................................................................... 18
Figure 20 ..................................................................................................................................................... 20
Figure 21 ..................................................................................................................................................... 22
Figure 22 ..................................................................................................................................................... 22
Figure 23 ..................................................................................................................................................... 25
Figure 24 ..................................................................................................................................................... 26
Figure 26 ..................................................................................................................................................... 28
Figure 25 ..................................................................................................................................................... 27
Figure 27 ..................................................................................................................................................... 47
Figure 28 ..................................................................................................................................................... 48




                                                                                                                                                               6-1
Introduction


       The Lunar Rover Vehicle (LRV) that drove across the surface of the moon in the 1970s

was a feat of engineering. The rover had to be lightweight, agile, and portable. The Great

Moonbuggy Race now held at the Huntsville, AL Space and Rocket Center honors that Rover

and it is our mission to fully design and construct a Moonbuggy to honor the original Lunar

Rover Vehicle. With all of the nostalgia that goes along with building the Moonbuggy there is an

even greater reward at stake. The Saluki Engineering Company is building a Moonbuggy to

compete at NASA’s Great Moonbuggy Race 2012. The purpose of the buggy is to win first

place, as the client desires, and bring a prestigious award home to Southern Illinois.


       The challenges that affect the design include: It must fit in a 4 foot by 4 foot cube, be

completely mechanically powered, carry both a male and a female driver, and be able to be

carried 20 feet in addition to, successfully navigating the 0.7 mile course at winning speeds. The

entire project must be completed to race in the 2012 Great Moonbuggy race on April 13-15.

With these design and timeline requirements in mind, the following is the proposal for the 2012

Moonbuggy submitted by the Saluki Engineering Company Team #78 Moon.




                                                                                                   1
Literature Review Team # 78 Moonbuggy


Introduction

       NASA’s Great Moonbuggy Race is an annual competition held at the Space and Rocket

Center in Huntsville, AL. The origins of the competition occurred in the 1970s when NASA’s

engineers were faced with the challenge to design the first Lunar Rover Vehicle (LRV). The

original objective was to create a vehicle to navigate on the surface of the moon; it needed to be

light-weight and durable. The biggest challenge was creating a way for the vehicle to fold into a

triangular compartment with a base measuring 5'x5'and a height of 5 '. The Great Moonbuggy

Race began in 1993 with intentions to honor the original design of NASA’s team of engineers.

The goal of this competition is to design a buggy to navigate through the rough terrain of the

course in the fastest time possible.


The Rules


The rules for competition are listed in the Appendix A.1.


The Course

       The order in which the Moonbuggy teams compete is determined from the best time trial

for the previous year. Southern Illinois University Carbondale was ranked 9th Place last year.

After a safety inspection and check for all required components each team is signaled to begin

the race. The course is 7/10 of a mile long and is riddled with obstacles. The obstacles are

designed to challenge the steering and overall durability of each buggy and are composed of

concrete, gravel, and sand. A diagram of the course can be viewed below in figure 1. The race is

a time trial so only one buggy competes at a time. The obstacles are reset by the grounds crew

after each buggy passes. The course is located on the grounds of the Space and Rocket Center

                                                                                                     2
and the main raceway follows the sidewalks and pathways that wind up and downhill. The

course is lined with rope and any team incurs a penalty if their buggy crosses the line of rope.

The penalties are discussed in more detail in the rules portion featured in the appendix. Each

team is allowed ten minutes to finish the race. At the conclusion of the race a check is conducted

to ensure the required accessories (camera, antenna, batteries, flag, etc.) are still attached. The

competition includes two trials for each buggy. The best time for the two runs is taken for the

official score. Figure 2 shows that Southern Illinois University finished 9th last year.




                                                Figure 1




                                                                                                      3
                                              Figure 2




Prizes


         The Great Moonbuggy Race is not only an engineering challenge but also a competition

and includes multiple opportunities to win prizes. The teams with the top 3 fastest lap times in

the race will receive prizes.


         Additional awards are as follows: The Featherweight Award is for the lowest product of

weight to run time without compromising the safety of the buggy, the Most Improved Award is

given to the team with the largest percent decrease in run time, the Rookie Award is for posting

the fastest first year time. There is a new award this year called the Best Report Award which is

given out for the best design report for the completion of the Moonbuggy. The system safety

award is given for exhibiting the best application of system safety engineering.




                                                                                                    4
           The final award at The Great Moonbuggy Race revolves around the design competition.

The winner is chosen for representing the best technical approach toward solving the engineering

problem of navigating the lunar surface. This award is purely for the technical approach taken by

the teams and requires both a written and an oral presentation.


Brake Systems


           In deciding on what parts to implement into the design, two options for brake systems

were discussed. These two options were Rim Brakes or Disc brakes. The pictures below show

both options:




Figure 3                                        Figure 4




           Rim brakes are shown in the Figure 3. They involve the application of friction pads to the

rim of the wheel which slows the wheel. Rim brakes are the cheaper of the two options and tend

to weigh less. Unfortunately, there are not many other positive aspects. Rim brakes, or V-brakes,

need to have straight and un-damaged rims in order to work properly. Also, the braking power

with rim brakes is not as consistent as with disc brakes. The Moonbuggy course will have


                                                                                                    5
uneven terrain, and certain obstacles that will require considerable breaking power. Rim brakes

are a definite safety concern for this reason. Not to mention they perform poorly in wet and

muddy conditions.


          Disc brakes are the other option for the Moonbuggy. Figure 4 shows a disc brake. With

disc brakes a set of calipers rest around a spinning disc that is mounted to the wheel. When the

brake is engaged the caliper squeezes the disc and slows the wheel. Disc Brakes are more costly

and tend to weigh more than rim brakes but have a lot of positive attributes. Disc brakes perform

better than rim brakes especially in wet or muddy conditions. This could be advantageous for the

great Moonbuggy race since the track conditions are unknown until arrival on race day. Disc

brakes require less force to apply and they are also not reliant on wheel or rim condition so new

wheels and rims is not an absolute necessity.


          For the 2011-2012 Moonbuggy the team has agreed to use disc brakes. The slight

addition in weight is a miniscule problem considering the more reliable and safer aspects they

offer. Disc brakes were also used on the Moonbuggy in previous years so the team is familiar

with working with them. In choosing disc brakes there are a couple options. They can either be

cable controlled or hydraulic controlled. Hydraulic disc brakes are considerably more expensive

than the cable controlled version. For this application cable controlled disc brakes will be used.

Also, the Moonbuggy design calls for brakes to only be located on the front wheels. This will

allow for a simpler design but it makes the better performance that disc brakes offer an important

factor.




                                                                                                     6
Steering


           There were three main steering options that were considered for the Moonbuggy. The

first option is seen on most bicycles and involves a straight set of handle bars that are mounted

over the driver’s lap. A photo of the handle bar option is shown below in figure 5.




Figure 5




           This is a viable steering option because it is simple and, assuming the driver knows how

to ride a bicycle, is a familiar way to steer. However; there are some cons to choosing this

option. Having upright handlebars could pose a problem for folding the Moonbuggy and also

lends to a more upright driver position. This option was chosen by Moonbuggy teams in previous

years and was not successful at competition.


           The second steering option is under seat handlebars. These are common on recumbent

bicycles. It involves mounting the handlebars under the driver’s seat. Figure 6 below gives an

example.




                                                                                                      7
                                                Figure 6




       Under seat steering is a better option for the Moonbuggy because it allows for the

handlebars not to interfere with the pedals. However, using this option to steer two wheels may

mean a larger turning radius for the buggy because of the limited range of motion for the

handlebars. Multiple teams at the great Moonbuggy race in spring of 2011 used this option and

found that the driver often hit himself/herself in the legs with the handlebars. This is the main

reason that under seat steering was not chosen for Moonbuggy.


       The final option that was discussed for the steering system is separate lever steering. The

Moonbuggy for the two previous races used this form of steering and all team members agree

that trial and error has proven it to be the best option for this year as well. Separate lever steering

requires a lever to be mounted above and slightly behind both front wheels. Then a series of tie

rods link each lever to its respective wheel and the wheels to each other so they cannot turn

independently. The photo below shows the Moonbuggy that was designed two years ago and is

equipped with separate lever steering.




                                                                                                      8
                                              Figure 7

       A modified version of this buggy seen in figure 7 was taken to competition in spring

2011 and now sits in the breezeway of the engineering building. When designing a new

Moonbuggy it is important to consider what was designed in previous years and by other teams,

since design is often a trial and error process. The separate lever steering was used by the Saluki

team for two previous years and was also used by the German team in spring of 2011. The

German Moonbuggy of 2011 has been a significant inspiration for this year’s Saluki

Moonbuggy. The specific mechanics of the separate lever steering will be simpler than either of

the vehicles that inspired this choice.


Suspension


       A basic Moonbuggy design is comprised of a rigid frame supporting the seats of the two

drivers; however with no suspension it will be a bumpy ride. The suspension for any vehicle

decreases the abrupt stress and strain on both the frame and the riders. One option for simple

suspension design can be modeled after the tractor. A tractor has a rigid frame and a leaf spring

seat design that cushions the ride for the driver. Shocks are another way of cushioning the ride.

Shocks work like a spring that stretches and contracts when needed. The shocks on the front

                                                                                                      9
wheels absorb the initial impact of each obstacle. The shocks under consideration are Risse coil

shocks for a bicycle pictured below in figure 8. A coil shock is a coil spring that compresses and

rebounds along with the frame of the buggy. The advantages of these shocks include a

lightweight and durable design of aluminum with an anodized exterior body, a remote oil

reservoir, and Teflon surface bearings. One disadvantage to the coil shocks the team has acquired

from a previous year is that their primary application is for rear suspension. The location would

be in the front for our design. The extended length of the Risse shock is 9 in. The BCS INC coil

shocks in figure 9 below are for a motorcycle and they extend 11.75 in. They are chrome and

reasonably priced individual sale. The BCS shocks do not have a remote oil reservoir. The oil

reservoir increases the fluid capacity of the shock. The oil reservoirs are advantageous for shocks

that run the risk of overheating. The shocks for the moonbuggy are not at risk of overheating and

therefore the oil reservoirs of the Risse shocks from a previous year are an added bonus but not

necessary. The coil shock system would be a significant upgrade from the trampoline springs

used for suspension in the 2010 Buggy Design. Trampoline springs provided an adequate amount

of cushion but they stretched out over time and had to be replaced.




                      Figure 8                                        Figure 9




                                                                                                   10
       In addition a leaf spring system would be mounted under the back driver’s seat that is

padded with extra foam for cushioning support. The image in figure 10 is the leaf spring concept

for a motorcycle seat. The leaf spring for the buggy would support a square flat-bottomed seat

platform. The seat design would resemble that of a recumbent bicycle.




                                              Figure 10




Drive Train


       The drive system needs to withstand the stress and abuse that is encountered throughout

the race. The 2011 team encountered multiple problems related to the drive train, which stemmed

from the use of a transmission designed for a 5 lb bicycle. While observing the regulations

regarding the drive train we realized that no energy storing devices such as a flywheel or springs

are allowed. With this in mind, there were three different transmission systems that were

considered for the buggy this year. This includes the system used last year, the Nexus Hub, and a

transmission similar to the Nexus (figure 11), called a Rohloff transmission (figure 12). These

transmissions are similar in that they are both chain driven, have similar geometry, and have

several gears that are operated by a cable.




                                                                                                  11
  Figure 12                                        Figure 11




        When weighing the pros and cons of the systems it was immediately evident that the

Rohloff transmission system was superior to the other option. The transmission has 14 gears.

That is twice the amount of the Nexus hub used in last year. In an online review of the best gear

ratio, Rohloff was the distinct winner as seen the next page in Figure 13. The gear ratio is the

output over input for the system. This transmission is making the most of the work put into

pedaling from the drivers. The drive train design is a chain driven system powered by two

forward facing drivers. The Nexus hub will handle 95.8ft∙lb of torque. The Rohloff system will

handle 210 of torque at the pedals and 150ft∙lb is the expected torque. The Rohloff transmission

is the best quality hub available and therefore it comes at a relatively high price approximately

$1000 and two are required. The cost is justified in knowing that the transmission will not fail

and it can be used by the Moonbggy Club in future years of competition. We have decided to use

the Rohloff, which is much more rugged, than the Nexus hub and has a better gear ratio.




                                                                                                    12
                                             Figure 13




Frame

        Before a frame design could be decided upon, the orientation of the riders needed to be

addressed. A few different designs have been seen at past competitions and include: Forward

facing front and back, opposite facing front and back, and side by side. An example of a side by

side seat buggy is seen in the Carleton University buggy as shown below in figure 14.




                       Figure 14

                                                                                                  13
       This design has a couple different disadvantages. As seen in this design the frame would

be of considerable complexity to support the driver and rider seat and has a high center of

gravity. A center of gravity this high on a buggy would cause it to overturn at high corner speeds.


       Another orientation was the back to back seating. This is where the driver and rider sit

back to back and the rider is pedaling blindly. The buggy below in figure 15 was created by the

University of Utah team.




                                                           Figure 15



       This orientation would aid in the folding of the buggy as it eliminates the spacing needed

between the riders pedal location and the driver’s back. However it does create a need for the

frame to be stronger due to the seat to wheel location. The seats will be offset from the wheels to

use free space in the middle of the buggy but this creates loading situations on the frame. By

having the offset the frame must be stronger to deal with any moments caused by the buggy

landing after an obstacle and this could lead to failure of the frame in the middle of the buggy.


       The orientation chosen for the SIUC moon buggy was of the front and back forward

facing design as seen in this image of Huntsville Center of Technology buggy in figure 16.




                                                                                                    14
                                              Figure 16

       This design was chosen due to observations from past moon buggy races that indicated

that this sort of orientation of the driver and rider was the most successful. This design would

not have the stability problems of the side by side buggy because it can allow for the center of

gravity to be much lower. With a little modification of the seat locations, the loading on the

frame can be minimized by placing the seats directly over the wheels. This would allow for the

frame to be made considerably smaller and lighter. However by using this orientation more

thought would have to be put into folding of the buggy to fit within the 4 ft cube but this is an

acceptable nuisance.


       In contrast to the old (2010) competition buggy which was of a triangular beam design,

the new buggy is to have a single rail as its main frame. This rail would be of square or

rectangular shape pending further review and composed of 4130 Chrome-moly steel. A single

rail design would be a significant weight reduction over the previous triangular beam design.


Aluminum and 4130 steel were considered as possible candidates for the new buggy and steel

was chosen because an aluminum single rail frame was fabricated for the 2010 Moonbuggy club

and an issue arose with the frame having to be preheated before welding due to the extra

thickness needed for aluminum to equal the strength of a thinner steel frame. It became apparent

that anytime a member was to be welded to the frame that preheating would have to take place

which wasted time and could cause distortion. This is not an issue with steel as it has a lower

                                                                                                    15
thermal conductivity than aluminum and does not draw heat away from the weld as quickly.

Another factor is aluminum is not as ductile as steel and would fail instead of deforming like

steel in the case of over loading. This could pose safety risks to the driver and rider.




Electrical Component



        New for this year’s Moonbuggy, Team #78 will be implementing a few different

computer and electrical (ECE) systems. These systems will include GPS, camera, and brake

light indicators. Our GPS will allow for us to calculate our speed, find where we are on the

course, and act as a data collection system. The camera will allow for streaming the video from

the camera live back to the pit area, in addition to recording the video for later viewing. The

brake lights will light up when the front driver presses the brakes, which will signal to the rear

driver to stop pedaling.


        A similar project has already been completed by the German Moonbuggy Team seen in

figure 17. Their GPS system allowed them to calculate speed, along with a few other

specifications for their data collection system, and they also had a digital camera attached to their

Moonbuggy, which recorded their races. Their system seemed to function well. The main

differences between this system and the one currently being researched will be that Team 78’s

GPS will have more functionality, in addition to live video streaming and recording. Brake

indicator lights are also a unique addition to this year’s Moonbuggy, and will add to the safety of

the Moonbuggy in the sense that the rear driver will not continue to keep pedaling while the front

driver is trying to stop.




                                                                                                     16
                                              Figure 17




       Most hand-held GPS systems have an accuracy of about ten to twenty meters, while more

advanced GPS systems use Differential GPS (DGPS) to obtain a much higher accuracy. DGPS

can be as accurate as up to just a couple centimeters error, and requires the use of another

receiver that is stationed on the ground, which is called the Reference Station.


       The parts required for the GPS portion of the project include a microcontroller, a battery,

a GPS, a display screen, buttons, and an oscillator. A microcontroller is basically a miniature

computer found in many different appliances.     The microcontroller currently appearing to be

the best quality for what it will be used for is an ATMega168, which has a high performance, yet

low power usage seen in figure 18. The price on this part is fairly inexpensive, has 32 pins, is 8-

bits, and costs between $4 and $5. Compared to the BASIC Stamp (produced by Parallax), the

ATMega168 is much better for this purpose. The BASIC Stamp, also an 8-bit microcontroller,

has 16 available pins, while the ATMega168 has 32. The ATMega168 is also cheaper than the

BASIC Stamp, which costs about $8 each. There are many different types of GPS systems and


                                                                                                  17
kits available. One in particular would allow for easy path tracking and timing. This GPS

receiver, called the Parallax GPS Receiver Module with External Antenna, is priced at around

$80, and is designed to provide date, time, latitude, longitude, altitude, and direction of travel,

among other data seen in figure 19. This GPS is more advantageous than the GPS Receiver

module (also priced around $80)




Figure 18                                                              Figure 19




            The ECE systems on our Moonbuggy will be functioning systems, as opposed to the

“simulated” systems that have been used in the past. These will help to add to the usefulness and

safety of the Moonbuggy.




Conclusion


            The mechanical design for this year’s Moonbuggy is to be simple and light weight. The

team plans to avoid the issues that previous teams have faced. The overall design consists of a


                                                                                                      18
single rail chrome-moly frame with Rohloff transmission systems, an under mount steering

design, leaf spring suspension for the forward facing seats, and fully functioning control panel.



Project Description

        The Moonbuggy is a human-powered vehicle, and will consist of five subsystems refer to

appendix C for block diagram, including: frame, steering, suspension, power train, and

electrical. Two drivers, one male and one female, must be able to carry the Moonbuggy 20 feet

in addition to maneuvering the vehicle through the 7/10-mile long course. The drivers should

also take part in construction of one of the five subsystems listed above.


        The frame subsystem based upon a design where both drivers face forward, and will be

constructed with 4130 chrome-moly steel. This design will be strong enough to handle the

weight of both drivers, electrical components, seats, and all other parts and accessories that

attach to the Moonbuggy.


        The steering subsystem will include a separate lever system for the front driver, where

both levers are connected by tie rods. To ensure that neither wheel turns independently, both

wheels will be linked together. The back driver will have handles to ensure stability and control

during the race. The braking system is also included in this category, where disc brakes will be

mounted on each of the front wheels.


        The suspension subsystem will consist of two coil shocks. The leaf spring will be steel.

This system will be able to handle the rough obstacles of the course, in addition to the weight of

the drivers.




                                                                                                  19
       The power train subsystem will make use of 2-$800 transmissions, with a Go-Kart

differential to be implemented in the front of the Moonbuggy. The wheels for our Moonbuggy

will be special ordered, and will be fit to handle the rough terrain throughout the course of the

competition.


       The electrical subsystem will include three main parts: brake light system, GPS system,

and a video camera. The brake lights will be constructed with a simple circuit, so when the front

driver presses the brakes, a light will alert the rear driver to stop pedaling. The GPS system will

collect data, such as speed, and transmit the information back to the pit area. The video camera

will record the race, in addition to live streaming the video back to the pit area.


       Please see Figures 20 and 21 to view the Block Diagrams for further explanation on how

the subsystems work together.



Basis of Design


Document                          Location                           Date Retrieved

Request for Proposal (RFP)        Appendix C                         08/25/11

Competition Rules                 Appendix B                         09/07/11



Team #78 Moonbuggy Draft                                             11/03/11

Proposal




                                               Figure 20




                                                                                                    20
Project Specifications
     Moonbuggy must fit inside a 4x4x4 ft. cube
     Drivers must be able to carry Moonbuggy 20 ft.
     Accessories must stay attached to Moonbuggy at all times
     Moonbuggy must be human powered
     Drivers must consist of one male and one female
     Moonbuggy must be durable enough to withstand obstacles
     Frame material currently chosen is 4130 chrome-moly steel.
     2”x1” Rectangular tubing needed is estimated at 10 ft. at 0.065 thick, and cost
      approximately $124 ($1.04 per inch)
     1” Square tubing needed is estimated at 15-20 ft. at 0.065” thick, and cost approximately
      $196 ($0.82 per inch)
     Transmission will consist of 2 Rohloff brand transmissions, costing $800 each (total
      $1,600)
     Go-Kart differential to be used on front of Moonbuggy
     Front suspension will consist of 2 Risse Racing brand coil shocks (3 lbs. each)
     Leaf spring mount will be steel
     Foam will be purchased (approximately $30)
     Braking system will be 2 disc brakes (approximately $50 each) mounted inside of front
      wheels, both of which will be cable controlled to reduce cost and weight, no brakes on
      rear wheels
     Steering system will be separate lever steering, attached using tie rods
     Wheels will be linked together to prevent independent turning
     Rear driver will have handles for stability
     Pedals will have slim profile, 2 sets required (approximately $200 each, total $400)
     Wheels will be special ordered, reinforced to handle rough terrain (approximately $400)
     GPS, Camera, and Brake Light Systems have a budget of $500
     GPS designed to keep track of speed and data collection system
     Camera will record and stream live video
     Brake light system alert rear driver to stop pedaling


                                                                                               21
Technical Descriptions
Frame
The frame material of choice is 4130 chrome-moly steel. We intend to use rectangular tubing as

well as square tubing as it allows easier fabrication. An estimation of material usage is around 10

feet for 2x1 inch rectangular tubing and between 15-20 ft of 1in square tubing. A length of 20

feet of one-inch tubing of 0.065 in thickness would be roughly $196 dollars or 0.82 dollars per

inch. 10 feet of 2x1 inch rectangular tubing of 0.065 in thickness is roughly $124 dollars or 1.04

dollars per inch.




                                              Figure 21




                                              Figure 22




                                                                                                  22
       List of Deliverables:

       Use Inventor software to design the frame

       Obtain a shipment of Chrome-moly steel

       List of Activities:

       Weld material together to form frame

Drive Train
The transmission and drive train consist of 2Rohloff brand transmissions costing $800 each. We

are also planning on using a differential on the front of the buggy that was originally intended for

a go cart. The rear of the buggy will be a solid axle that has no power supplied.

       List of Deliverables:

       Obtain Rohloff Transmissions

       Obtain differential

       List of Activities:

       Install the transmissions and differential on the frame



Suspension
The front suspension requires 2 Risse Racing brand coil shocks weighing 3 lbs each. The leaf

spring mount for the seats will be made of steel and fabricated in the shop the mount needs to be

as light as possible. Foam will be purchase for the bottom and back of the seats approximate cost

$30.

       List of Deliverables:

       Design leaf spring using Inventor

       Run stress test for leaf spring in Inventor

       List of Activities:

                                                                                                 23
       Install shocks (on hand) and leaf spring



Steering
The steering system will be separate lever steering. Each lever is mounted slightly behind the

front wheels and will be attached with a series of tie rods. The lever mechanism will be

fabricated in the shop. The wheels will be linked together to keep them from turning

independently. Only the driver seated in the front will be able to steer. The person in rear will

have handles to hold on to.

       List of Deliverables:

       Obtain tie rods

       List of Activities:

       Install the tie rods in designed arrangement

Electrical Component
The required accessories will not be simulated this year. The GPS, camera, and brake light

systems for the Moonbuggy have a current budget of $500. The GPS system will be designed to

help keep track of speed on the course, in addition to a data collection system. The camera will

record live video, stream it back to a pit area, where it will also be recorded for later

viewing. The brake light system will alert the rear driver to stop pedaling, and ensure safe

operation of the Moonbuggy. All three systems will replace components used to previously

simulate these devices, and will be fully functional.

       List of Deliverables:

       Obtain video camera, GPS, brake light components

       List of Activities:

       Attach the components to the ATMEGA 168 micro-controller

                                                                                                    24
Project Organization Chart


   Laura Bickers                        Kaleb Hartman                             Lisa Dohn

        ME                                      ME                                      CpE

   Steering                             Frame                                     Electrical
                                                                                  Component
   Brakes                               Hinge
                                                                                  GPS
   Steering-                            Seats
                                                                                  Camera
   mechanism                            Pedals
                                                                                  Brake-Light
   Wheels                                                                         Indicator


                   Jonathan Beaven                          Katie Damron-Stokes

                           ME                               ME, Project Manager
                   Drive Train                              Suspension

                   Chain                                    Shocks

                   Transmission(s)                          A-Arms

                   Differentials                            Leaf Spring

                                                Figure 23

               The figure above describes the division of labor for the five subsystems




                                                                                                25
Action Item List
                                       Project: Moonbuggy
                        Action Item List

               Team #78 Members
                  Lisa Dohn, CpE
              Jonathan Beaven, ME
            Katie Damron-Stokes, ME
               Kaleb Hartman, ME                           Date: 7-Dec
                Laura Bickers, ME

#                   Activity           Person Assigned    Due     New Due   Status            Comments
                                                                                     Powerstrain, Steering,
       Order Mechanical Parts           ALL                                  10%
     1                                         17-Jan    23-Jan                      Suspension
     2 Weld Frame                       KH     17-Jan    27-Jan              0%      In Machine shop
     3 Build Seats                      KDS    17-Jan    27-Jan              0%      Wood, Foam, & Steel
                                                                                     Extra ordered with Frame
       Cut Steering from extra steel     LB                                  0%
     4                                         17-Jan    27-Jan                      metal
     5 Assemble Powertrain              JB     23-Jan    27-Jan              0%      Pedals, Chain, Transmission
     6 Mount Wheels                     KH     23-Jan    30-Jan              0%      Axels and four wheels
     7 Build Hinge                      KH     17-Jan    30-Jan              0%      Center of Frame with latch
     8 Build Break Light System         LD     17-Jan    27-Jan              0%      Visible for the rear driver
                                                                                     Video Camera,
         Order Electrical Parts         LD                                   0%
     9                                         17-Jan    23-Jan                      Speedometer, GPS
                                                                                     Tie Rods, and levers attached
       Assemble Steering               LB                                    0%
    10                                         23-Jan    30-Jan                      to wheels
    11 Order T-shirts for Competition KDS      23-Jan    30-Jan              20%     Reuse last years Logo

                                                          Figure 24




                                                                                                                     26
Timeline




                                               Figure 25



Contract Pricing
       Guaranteed-maximum contract price- The total price the client can expect to pay is

$5000.00 (five thousand dollars). This includes all material to be used as well as labor expected.



Legalese
       The Saluki Engineering Co. offers to perform the work defined in this proposal for a

guaranteed maximum contract price of five thousand dollars ($5000.00).



Resources and Parts List
                              Moonbuggy Cost Proposal
                                   Items on hand indicated with $0
Item                                                  Quantity       Price
Rohloff Speedhub 500/14 8022                          2              $1600
Avid BB7 Mechanical Disc Brakes                       2              $152
Forte Convert Platform Pedals                         2              $120
4130 Chrome-moly 1”x1” square                         20ft           $200
4130 Chrome-moly 1”x2” rectangular                    20ft           $300
Green LEDs                                            5              $12.50
Electrical Wiring                                     10ft           $7.99
Momentary push button switch                          2              $6.38
9V Battery                                            1              $3.79

                                                                                                27
Microcontroller ATMega 168                           1            $4.68
Buttons/Controls                                     5            $15
Contour 1300 Hands free Camcorder                    1            $100
Parallax GPS Receiver w/ext antenna                  2            $79.99
Forte Terramax 26” wheel                             4            $400
Panaracer Smoke Classic MTB Tire                     4            $100
Nuts, bolts, misc.                                   n/a          $75
Risse Racing Coil Shocks                             2            $0
Seat Frames                                          2            $0
TOTAL:                                                            $3177.33

                                Figure 26




Validity Statement
       This proposal is valid for a period of thirty days from the date of proposal. After this

time, Saluki Engineering Co. reserves the right to review it and determine if any modification is

needed.



References


[1] Course Map

http://moonbuggy.msfc.nasa.gov/course.html

[2] College Display Chart

http://moonbuggy.msfc.nasa.gov/docs/FY11/CollegeDisplayReport.pdf

[3] Rim Brake

http://bikeblog.edublogs.org/2011/06/16/information-about-rim-brakes/

[4] Disc Brake

http://blog.centurycycles.com/2009/03/techtalk-zen-of-singlespeeds.html

[5] Handle Bar

http://www.buzzle.com/articles/bicycle-handlebar-types.html

[6] Recumbent Bicycle


                                                                                                  28
http://rbr.info/support/recumbent-glossary.html

[7] Team Photo

[8] Risse Shock

http://www.risseracing.com/coilshocks.shtml

[9] BCS INC Shock

http://www.jcwhitney.com/shocks/p2021447.jcwx?filterid=c51023j3

[10] Leaf Spring Seat

http://www.triumphrat.net/classic-vintage-and-veteran/153531-leaf-spring-seat-mount.html

[11] Rohloff Transmission

http://www.koga-signature.com/en/Signature-Catalog.aspx

[12]Nexus Hub

http://sheldonbrown.com/nexus-mech.html

[13] Overall Gear Ratio

http://hubstripping.wordpress.com/internal-gear-hub-review/

[14]Carleton University Buggy

http://www.designbuzz.com/entry/students-design-flexible-and-comfortable-moonbuggy-seat/

[15] University of Utah Buggy

http://www.mech.utah.edu/news/stories/moonbuggyrace2011.html

[16] Huntsville Center of Technology

http://blogs.nasa.gov/cm/newui/blog/viewpostlist.jsp?blogname=moonbuggy

[17] Picture from last year’s competition

[18] ATMEGA Microprocessor Chip

http://www.ladyada.net/learn/arduino/lesson1.html

[19] Parallax GPS Receiver

http://www.diybin.com/products/Parallax-GPS-Receiver-Module.html

                                                                                           29
Risse Racing Website - Coil Shock Specifics retrieved October 5, 2011, from
http://www.risseracing.com/coilshocks.shtml

NASA Great Moonbuggy Race Website: Competition Rules, Course Information, College
Display Cart, Retrieved October 3, 2011, from

http://moonbuggy.msfc.nasa.gov/course.html



Griffin, D. (2011, June 26). How does the global positioning system work?Retrieved from
http://www.pocketgpsworld.com/howgpsworks.php

How does GPS work?(n.d.). Retrieved from http://www.nasm.si.edu/gps/work.html

Anthony, S. (2011, October 3). How to build your own GPS receiver. Retrieved from
http://www.extremetech.com/extreme/98063-how-to-build-your-own-gps-receiver

Chivers, M. (n.d.). Differential gps explained. Retrieved from
http://www.esri.com/news/arcuser/0103/differential1of2.html

Parallax GPS receiver module.(n.d.). Retrieved from
http://www.parallax.com/tabid/768/ProductID/396/Default.aspx

How to build the open GPS tracker.(n.d.). Retrieved from
http://www.opengpstracker.org/build.html




                                                                                          30
Appendix A


Resumes



                                          Kaleb Hartman
      600 E. Campus Dr. Apt 3B, Carbondale, Il, 62901 | 1-217-663-3327 | kalebhrtmn@gmail.com

Education
Southern Illinois University Carbondale

Major: Mechanical Engineering: 3.59 GPA

Minor: Mathematics, Completed Spring 2011

Anticipated graduation: May 2012

Honors
Dean’s List: Fall 2009, Spring 2010, Fall 2010, Spring 2011

Provost Scholarship: August 2008- May 2010

College of Engineering Scholarship: August 2008-May 2010

Tau Beta Pi Invitation: Fall 2011

Extracurricular Activities
ASCE Steel Bridge Project: Spring 2009

Helped in fabrication, welding, and troubleshooting design issues.

Representative of Abbott Hall: Fall 2008- Spring 2009

Served as treasurer as well as a voting member of campus residence hall council.

SIUC Moon Buggy: Spring 2011, Fall 2011, Spring 2012

Helped in fabrication, TIG welding, and design of a vehicle for NASA Moon buggy competition.

Academic and Professional Experience
Engineering Intern, GSI: Summer 2011

                                                                                                31
Managed labor rate study for Flora, Illinois factory. Created Excel calculator that found labor cost for
3200+ parts in factory. Designed parts in Pro-E and implemented into production. Worked in LEAN
workshop to enhance efficiency. Obtained experience in SAP, Windchill and Pro-E computer programs as
well as strengthened knowledge in Excel.



Undergrad Assistantship, College of Engineering: Fall 2011, Spring 2012

Aided Professor with research in the area of Thermo photovoltaic cells. Helped fabricate and test
experimental solar cell.



College of Engineering Peer Mentor: August 2009-May 2011

Provided personal support and tutoring to undergrad engineering students. Lived in dorm with students
to form bonds as well as increase morale. Oversaw 8-10 students. Worked with other mentors to fix
issues students may have.

Volunteer Work
St. John’s Lutheran Church Sound technician: August 2004 – present

Operated sound system during the service as well as for some special events.



References available on request




                                                                                                     32
                                      Jonathan D. Beaven
                                           2410 ST. RT. 130 S.
                                          Morganfield, KY. 42437
                                 Cell: 270-952-4489 Home: 270-952-4489
                                         Jonathan.beaven@siu.edu
Objective
To obtain skills with a well-established organization where I may fully utilize my present skills and
abilities. I wish to obtain vital engineering experience and practice skills I have obtained previously in life
pertaining to engineering. Not only do I wish to better myself, I also wish to better the company that has
employed me.

Experience
Browns Welding Service                                       Sturgis, KY
Welder/ Fabricator                                                    06/06-03/08
    Welding Methods: Arc, MIG, and TIG
    Worked with steel, aluminum, copper, brass, and cast iron
    Designed and fabricated
    Worked in the shop as well as out in the field
    Grain leg and Water tower work (at high elevation)

Little Kentucky Smokehouse                                          Uniontown, KY
Maintenance/ Welder                                                 5/08-09/08
     Weld primarily stainless steel
     Work in maintenance
     Designed and fabricated many things in food prep

 Curry Welding                                              Shawneetown, IL.
 Welder/ Fabricator                                                 09/08-07/09
    Weld numerous different things
    Repair many different items
    Worked with steel, aluminum, copper, brass, and cast iron
    Designed and fabricated
    Worked in the shop as well as out in the field
    Worked with auto cad /plasma cam system

On Site Welding and Repair                                             Morganfield, KY
 Owner/ Operator                                                         07/09-Present

       Welding
       Fabricating/ Design
       Repair
       Cutting
       Managing

 Education


                                                                                                            33
Southeastern Illinois College                            Harrisburg, IL.
Associate in Science                                         2009
Associate in Arts                                            2009
Associate in Engineering Science                                     2009
 SKILL
    Computer and Internet literate
    Assertive, self-motivated, goal-oriented, organized and efficient
    A Flexible, Cooperative, hard worker, team player and reliable
    A good morale builder
    Managerial experience
    Experienced in AutoCAD and Solid Works
    Calculating advanced mathematical problems
    Problem solving in general
    Welding / fabricating
    Being economically conscious in decision making
    Experienced in C++ and Matlab

Reference
    Professional and personal references available upon request.




                                                                            34
                                                     Laura E. Bickers
Permanent:                                   lebickers@gmail.com/ 618-559-7976          College:

13953 Oscar road                                                                       212 S Dixon Ave

Marion, IL 62959                                                                       Carbondale, IL 62901

Objectives:

               To build both my knowledge and experience base in Mechanical Engineering specifically computer aided
               design and its industrial applications as well as to become a leader in the mechanical engineering field
               through accurate and ethical work.

Profile:

               -   Academics- cumulative GPA 3.94/4.0
               -   Scholarship- Awarded a full ride SIUC Presidential Scholarship

               -   Community Focus- Serve as an officer for SIUC SUMMIT service RSO
               -   Diligent- Work as an aide to the Chancellor in the Chancellor’s Office
               -   Highly Involved- Active in 6 student organizations around campus

Education:

                   Southern Illinois University Carbondale, College of Engineering Aug 2008-May 2012

                            Bachelor of Science, Mechanical Engineering             GPA 3.9/4.0

                            Will graduate with minor in Math

                   University of Illinois-Chicago                                           Begins Summer 2012

                            Master of Engineering Degree (Online Program)

Experience:

           Cracker Barrel Old Country Store                                                 06/11-Present

                   -Worked as hostess, managing and seating patrons

                   -Worked as a server

           SIUC Chancellors office, Carbondale, IL                                  01/09-Present

                   - Aide in document generation, management, and correction

                   - Manage Alumni and good Samaritan recognition for the Chancellor

           Nascote Industries, Inc. Nashville, IL                                           05/10-08/10

                   -Engineering Project Management Intern

                   -Assisted in product development, and program launch for injection molded vehicle parts

Awards and Accomplishments:
                                                                                                                          35
                 SIUC Presidential Scholarship academic /Rotary Scholarship/Valedictorian’ Scholarship/Highway District
                 #9 Scholarship/Aisin Mfg. Illinois, LLC (AMI) Scholarship/SIUC College of Engineering Scholarship/SIUC
                 Deans List/Sigma Alpha Lambda honor society/Alpha Lambda Delta honor society/Tau Beta Pi
                 Engineering Honor Society/David L. Eddingfield Award

Skills / License / Certifications:

                 AutoCAD, Word, Excel, Power point, C++, Mat Lab, Inventor

References:

                          John Nicklow- Provost and Senior Vice Chancellor

                          Southern Illinois University Carbondale

                          Anthony Hall 125-Mail Code 4305

                          1265 Lincoln Drive

                          Carbondale, IL 62901

                          Work Phone: 618-453-5744

                          Email: nicklow@siu.edu

                          Lisa Tripp- Administrative Assistant to the Office of the General Council

                          Southern Illinois University Carbondale

                          Stone Center-Mail Code 6801

                          Carbondale, IL 62901

                          Work Phone: 618-536-3447

                          Email: ltripp@chanc.siu.edu

                          Keith Korte-Engineering Manager

                          Nascote Industries Inc.

                          18310 Enterprise Avenue

                          Nashville, IL 62263-1619

                          Work Phone: 618-321-4381

                          Home Phone: 618-248-9936

                          Email: Keith.korte@magna.com




                                                                                                                     36
                                                 Lisa E. Dohn
                                                lisaedohn@gmail.com
Permanent Address:                                                                         College Address:
2405 Fulle Street                                                                          314 Pierce Hall
Rolling Meadows, IL 60008                                                                  Carbondale, IL 62901
(847)-394-3372                                                                             (847)-287-6032

Objective:
To obtain full-time employment as a computer engineer beginning May 2012
Education:
Bachelor of Science in Computer Engineering, May 2012 (Current GPA: 3.56/4.0)
Mathematics: Minor
Southern Illinois University Carbondale, IL 62901
Skills:
     Microsoft Office                          Mat lab                                C++/C
     PSpice                                    XILINX                                 TestStand/VeriStand

Relevant Coursework:
    Multicore Programming                      Digital Circuit Design                 VLSI Design & Test
    Signals and Systems                        Differential Equations                  Automation
    Software Engineering                       Electric Circuits                      Data Communications
                                                                                         Networks
Work Experience:
      GentexCorporation, May 2011 – August 12th, 2011
          Software Test Intern: Performed testing on auto-dimming mirrors to ensure software functionality, wrote
              robustness test scripts for various mirrors.
      Palatine Vision Center, August 5th, 2006 – Present
          File Clerk: Prepare files, answer phones, and assist opticians.
      SIUC College of Engineering, August 2009 - Present
          Peer Mentor: Assist new students in adjusting to college academically and socially.
          Supplemental Instructor: Assist students in solving different levels of math problems.
      Chicago Mercantile Exchange, June 14th, 2010 – August 13th, 2010
          Business Intelligence Intern: Wrote technical documentations, reviewed code to ensure documentation
              accuracy.

Campus Activities:
     Thompson Point Executive Council (TPEC): Fall 2008-Spring 2009
          Represented Pierce Hall residents on financial matters.
     Society of Women Engineers (SWE): Fall 2008-Spring 2010
          Secretary for the Fall 2009-Spring 2010 school year, participated in community service projects.
     Engineers Without Borders (EWB): Fall 2009-Present
          Help coordinate fundraising efforts for our bridge culvert project in Honduras
     Moonbuggy Team: Spring 2010-Present
          Collaborated on designing and building Moonbuggy, drove the Moonbuggy at NASA’s 2010 Great
              Moonbuggy Race, Secretary Fall 2010 – present

Honors/Awards:
      Tau Beta Pi Honor Society: Fall 2011-present
      Dean’s List: Fall 2008, Spring 2009, Fall 2009, Spring 2010, Fall 2010, Spring 2011
      Alpha Lambda Delta Honor Society: Spring 2009-present
      Golden Key International Honour Society: Fall 2009-present
      Eta Kappa Nu Honor Society: Fall 2010-present (Web Correspondent Officer Fall 2011-present
                                                                                                                37
                                Katie Damron-Stokes
                               9539 Rt. 148 Carterville, IL 62918
                             katied-s@hotmail.com (618)525-3914
Objective:
To secure a full-time position working as an entry level Mechanical Engineer.

Profile:
Organized and dedicated individual skilled at project management and preparation, determined
to extract the best work from a team, possessing a broad base of knowledge ranging from basic
machining to customer service.
Overall GPA 3.52/4.0

Education:
   B.S., Mechanical Engineering and Energy Process
      Southern Illinois University Carbondale
      Expected Graduation: May 2012
   Specific Course Work:
      Machine Design, Pneumatic Hydraulics, Advanced Fluid Mechanics, AutoCAD
   John A. Logan Community College
      Awarded JALC’s Top Students in 2007-2008 school year
      Received a Music Vocal Performance Scholarship in 2006

Work Experience:

      Bechtel Corporation            Lively Grove, IL                   Date:05/2008-08/2008
       Project: Prairie State Energy Campus (PSEC) Coal-fired Power Plant
       Engineering Intern
       Responsible for:
       Preparation of blueprint drawings for the Millwrights and Boilermakers
       Weld Estimates for the primary and secondary air duct systems
       Inventory of presence and condition for shipped components
       Cross-referencing dimensions between supplying companies

      Menard’s Home Improvement            Marion, IL       Date:03/2007-05/2008
       Sales Associate Front End and Customer Service
       Received the maximum number of merit raises
       Responsible for:
       Training new employees (trained 10)
       Assisted all departments with vacancies as needed

Extra-Curricular Activities:
      Moonbuggy Team
      3 year member and current Club President
      Project Manager of Senior Design Team #78 Moonbuggy
                             *References available upon request*
Appendix B


Competition Rules


        NASA’s Great Moonbuggy Race has rules set in place in multiple categories, including

Construction, Passenger, Penalties, and Code of Conduct.


Construction Requirements


   1.   Moonbuggy Teams- each moonbuggy must be the work of a student team of a high

        school or an accredited institution of higher learning. A group of high schools may also

        work in collaboration toward building a moonbuggy entry.

   2.   Propulsion System- must be human powered (one or both passengers); and energy

        storage devices such as springs, flywheels or others are not allowed.

   3.   Collapsed Dimensions- prior to course testing, assembly judging is conducted the

        morning of the race and prior to the first run. The collapsed vehicle must fit in a volume

        with a maximum dimension 4'x 4'x 4'. Tape, strap, or other devices can be used to hold

        the buggy together in the collapsed configuration; however, all such devices must be part

        of what is carried (see item 4 below) and any component not to be part of the buggy when

        racing the course must be left in the “tool area” following assembly timing. A frame of

        this dimension will be placed over the collapsed moonbuggy for verification. No contact

        with the buggy by the team is permitted while being measured.

   4.   Weight- the vehicle must be lifted and carried 20 feet by the two passengers, without aid

        of any sort (e.g., no wheels) in the unassembled 4'x 4'x 4' volume configuration.




                                                                                                   39
5.    Assembled Dimensions- the maximum width of the assembled vehicle, with riders

      onboard, is four (4) feet, including wheels. There are no constraints for height and length

      of the assembled vehicle.

6.    Vehicles not constructed by the entering team are not acceptable. Vehicles that have been

      previously entered should contain major modifications that attempt to improve on design

      and performance. Students are expected to design, construct and test their own buggies,

      and the race drivers chosen from each team should also be involved in these activities.

7.    No constraints are imposed in the means of contact between the buggy and the simulated

      lunar surface. We encourage creativity and participants are open to using wheels, belts,

      treads, etc.

8.    All parts of the buggy, including the seat, steering controls, and pedals, with which the

      riders have normal contact must be designed such that their lowest surface must be at

      least 15” (38.1 cm) above the ground when the buggy is at rest on a level surface and

      with riders onboard. In the case of the pedals and steering controls, that measurement is

      to be made when that part is in the lowest position possible (not when the buggy is in the

      collapsed configuration).

9.    The vehicle must have a turning radius of 15ft or less.

10.   For safety reasons, it is recommended that the center of gravity of the "vehicle plus

      passengers" be low enough to safely handle slopes of 30o front-to-back and side-to-side.

      Any moonbuggy exhibiting handling characteristics or other vehicle dynamics that are

      deemed unsafe or unstable by the judges will be disqualified from the competition. This

      determination will be made by inspection of the assembled moonbuggies prior to course

      testing. Any moonbuggy that is judged to have become unsafe while racing or passengers



                                                                                                  40
      who are found to be injured or bleeding can be disqualified from that race attempt and

      removed from the course.

11.   Each vehicle must have seat restraints for each of the two passengers. The restraints must

      be worn during runs of the course.

12.   All sharp edges and protrusions must be eliminated (i.e., padded) or guarded as necessary

      to the satisfaction of the judges.

13.   The vehicle must be equipped with a simulated high gain antenna, other simulated

      equipment, fenders, and a flag. The high gain antenna must be approximately circular in

      shape and no less than 24 in in diameter. The other simulated equipment are a TV

      camera, two batteries and an electronic control panel (radio, display, buggy

      controls), together totaling no less than 1ft3in volume in one or more boxes. These

      equipment items can be functional, not just simulated, but must still meet the minimum

      total volume requirement. A fender (moon dust abatement device) must be placed over

      each wheel. The flag must be a national or institution flag and be visible from the front,

      from the side, or from the rear. The presence and size requirements for all components

      will be checked prior to each race attempt on the course. The presence of all components

      will be checked after successful completion of all race attempts on the course.

14.   Backing up is not required, but may be useful.

15.   Vehicles that do not satisfy the intent of the moonbuggy competition can be disqualified.

16.   Only vehicles registered for the competition will be allowed in the pits area.

17.   Brakes must be present to ensure the ability to safely stop the vehicle.

18.   Appropriate protective equipment, gear and clothing are required when engaged in a

      construction activity such as welding.



                                                                                                   41
Passenger Rules


   1. Moonbuggy Passengers- two (2) student team members (one female and one male) must

      propel the moonbuggy over the course.

   2. Eye protection (e.g., safety glasses, goggles, or face shield), head protection (a bicycle

      helmet), and appropriate clothing must be worn during operation of the moonbuggy.

      Shoes are required. Although at the discretion of adult riders, adult supervisors, and

      parents of minors, it is recommended that clothing providing some protection against cuts

      and abrasion be worn (e.g., long sleeved and long torso shirts, long pants, and socks).

   3. No appendages such as stilts may be used on the feet of the moonbuggy passengers.

   4. Pushing the moonbuggy with a pole or other implement is not allowed. A rider’s use of

      their hands on the wheels as with a wheelchair to rock or otherwise facilitate moving the

      moonbuggy is permitted.

   5. The consumption of alcoholic beverages or controlled substances by any team member at

      any time during the event is strictly prohibited and is grounds for disqualification of the

      team.

   6. Only clipless style pedals require compatible and interlocking cleat-style shoes. Standard

      size pedals that include cleat-style clips do not have to be matched with cleat-style shoes

      for running the race. The feet of both riders must be on the pedals at the end of the timed

      assembly, but do not need to be engaged with any included restraints. In addition, riders

      and buggies are expected to be fully ready to race on the course, including helmets, full

      fingered gloves, goggles, and attached seatbelts to complete the timed assembly

      exercise. Be careful in adjusting the chain while racing. Each team will be required to

      develop a “Signal System” between the two riders to ensure hands are clear of the

                                                                                                    42
       chain. They will be asked to describe their communication plan to the Marshall Safety

       Action Team (MSAT) member and/or the Starter prior to the race.

   7. Riding Moonbuggy in Parking Lot - No riding of moonbuggies in the parking lot. This is

       a safety hazard. A designated area will be provided for riders to test their moonbuggies.


Penalties


Penalties may be incurred for the following:


Pre-Condition (0:30 seconds each):


   1. Dust Abatement (fenders)

   2. High Gain Antennae (must be greater than or equal to 24 inches)

   3. National or Institution Flag

   4. TV Camera

   5. Battery # 1

   6. Battery # 2

   7. Electronic Control Panel

   8. The total volume of Items #5-7 must be no less than 1 cubic foot.


Assembly (2:00 minutes each):


   1. Carry (weight) requirement

   2. Collapsed Configuration 4'x4'x4' volume requirement

   3. Assembled width (4') requirement

   4. 15" clearance requirement



                                                                                                   43
Final Condition (0:30 seconds each):


   1. Dust abatement (fenders), high gain antenna, national or institution flag, batteries #1 and

       #2, TV Camera, Electronic Control Panel


Disqualification:


   1. Passenger requirement (1 male, 1 female)

   2. Missing an obstacle

   3. Safety Disqualification (Judges' discretion)


During the Race:


   1. Obstacle (1-15) penalties, penalty range 0 sec. to 2 minutes

   2. Passenger/ground, course contact penalties, 0 sec. to 2 minutes of standard penalty

   3. One passenger/ground contact penalty will be incurred if there is ground, rope or railing

       contact in an "obstacle judging area". An obstacle judging area is defined as the area from

       the previous obstacle to the "current" obstacle. Maximum of 1 penalty in each obstacle

       judging area. Standard Penalty: 1 minute.

   4. Riding the moonbuggy in the parking lot. Penalty: 1 minute.


Pre/Post Race:


   1. The vehicle must be equipped with a simulated high gain antenna, other simulated

       equipment, fenders, and a flag. The high gain antenna must be approximately circular in

       shape and no less than 24 in in diameter. The other simulated equipment are a TV

       camera, two batteries and an electronic control panel (radio, display, buggy

                                                                                                44
       controls), together totaling no less than 1ft3in volume in one or more boxes. These

       equipment items can be functional, not just simulated, but must still meet the minimum

       total volume requirement. A fender (moon dust abatement device) must be placed over

       each wheel. The flag must be a national or institution flag and be visible from the front,

       from the side, or from the rear. The presence and size requirements for all components

       will be checked prior to each race attempt on the course. The presence of all components

       will be checked after successful completion of all race attempts on the course - 0:30 sec

       each.

   2. Riding the moonbuggy in the parking lot. Penalty: 1 minute.


Disqualification:


   1. Passenger requirement (1 male, 1 female)

   2. Missing an obstacle

   3. Safety Disqualification (judges discretion)


Penalty Appeals


       The scoring decisions of the judges are considered to be final. Only in extraordinary

circumstances should appeals of penalties be proposed. If the appeals process is chosen, the

advisor/instructor or the team leader must submit the appeal of the penalty in writing to Mike

Selby in the scoring area within 1/2 hour of the posting of the score in question. The final

decision of the Race Director shall prevail.


Code of Conduct

       Committee members who administer the planning and operation of the Great Moonbuggy

                                                                                                    45
Race strive to conduct themselves in a professional manner. We ask the same from each of the

participants. All faculty members, team members, team supporters, judges and officials are to

conduct themselves responsibly and respectfully throughout the Great Moonbuggy Race.

Anyone not doing so will be requested to leave the U S Space & Rocket Center grounds.




Appendix C


                                                                                                46
Overall Block Diagram




                                     Figure 27




Electrical Component Block Diagram




                                                 47
      Figure 28




Potential ME 495 Project



                           48
                            Proposal Fall 2011 – Design Report Spring 2012



Title:   Moonbuggy Racer



Industrial Sponsor: NASA

Faculty Advisor: Dr. Tsuchin Philip Chu

No. of Students: 4-6(MEEP & ECE)



Description:



On April 18, 1998, SIU participated for the first time in the NASA/AIAA Moon Buggy Competition which is
held annually in Huntsville, Alabama. The competition involves a team consisting of a male and a female
students using human power to manipulate a moon buggy over a 0.7 mile course containing numerous
obstacles. Some of the obstacles involve rocks, craters, tires, sand, simulated lunar surfaces, and steep
inclines. Before the race begins, officials measure the buggy. A requirement of the race is that the buggy
must be able to fit into a 4’ by 4’ by 4’volume and be carried 20 feet.



The project is to design and construct one moonbuggy racer to enter the competition in early April.
Additionally, the moonbuggy shall be outfitted with the state-of-the-art structural health monitoring
system consisted of various type of sensors and camcorders. According to the record, the time to finish
the race by the top three teams is approximately3 to 5 minutes. The URL for the 2012 moonbuggy race
is http://moonbuggy.msfc.nasa.gov/




                                                                                                       49

				
DOCUMENT INFO
Shared By:
Categories:
Tags:
Stats:
views:11
posted:4/6/2012
language:English
pages:55