; Trigonometry Worksheets
Documents
User Generated
Resources
Learning Center

# Trigonometry Worksheets

VIEWS: 46 PAGES: 4

• pg 1
```									                  Trigonometry Worksheets
Trigonometry Worksheets

1.Differentiate the function f (x) where f (x) = 3 sin (x) - 4 sin (x)?

3 sin (x) + 4 cos (x)
3 cos (x) + 4 sin (x)
2 sin (x) + 4 cos (x)
5 sin (x) + 8 cos (x)

2. Differentiate the function f ( x ) = x 3 tan ( x )?

x 2( x sec 2 x + 3 tan x )
x2 ( cosec 2 x + 3 tan x )
x2 ( sec x + 3 tan x )
x2 ( sec x + 3 tan2 x )

Know More About Trigonometry Worksheet

Tutorcircle.com                                              Page No. : ­ 1/4
3. Differentiate the function y = cos ( x ) / [ 1 + sin ( x ) ]?

-1 / 1 + cos (x)
-1 / 1 + cosec (x)
-1 / 1 + tan (x)
-1 / 1 + sin (x)

4. Perform differentiation operation on function y = cosec x . cot x?

- cosec x ( cos 2 x + cot 2 x )
- cosec x ( sin 2 x + cot 2 x )
- cosec x ( cosec 2 x + cot 2 x )
- cosec x ( cos x + cot x )

5. If f ( x ) = sin 2 x / cos 2 x, then find f' ( x )?

2 tan x . sec 2 x
2 tan x . sec x
2 tan 2 x . sec 2 x
2 tan 3 x . sec2 x

6. Perform integration operation on function ∫ sin 3x dx?

- 1 / 3 sin 3x + c
- 1 / 3 cos 3x + c
- 1 / 3 tan 3x + c
- 1 / 3 cot 3x + c

Read  More About Trigonometric Worksheets

Tutorcircle.com                                                 Page No. : ­ 2/4
7. Find the result of the given integral ∫ sin 5 x dx?

- cos x + 2 / 3 cos 3 x – 1 / 5 cos 5 x + c
- sin x + 2 / 3 cos 3 x – 1 / 5 cos 5 x + c
- cos x + 2 / 3 cos 3 x – 1 / 5 sin 5 x + c
- cos x + 2 / 3 cot 3 x – 1 / 5 cos 5 x + c

8. Calculate the result of the integral ∫ sin 6 x . cos 3 x dx?

1 / 7 sin x – 1 / 9 sin 9 x + c
1 / 7 sin 7 x – 1 / 9 sin x + c
1 / 7 sin x – 1 / 9 sin x + c
1 / 7 sin 7 x – 1 / 9 sin 9 x + c

9. Find the result of integral ∫ cos 2 x / ( 1 + sin x ) dx?

x + sin x + c
x + cot x + c
x + cos x + c
x - cos x + c

Tutorcircle.com                                                Page No. : ­ 3/4
Page No. : ­ 2/3
Thank You

TutorCircle.com

```
To top
;