Safe Passage Into the 21st Century

Document Sample
Safe Passage Into the 21st Century Powered By Docstoc
					A reformatted text-only version of the brochure
                                              View from the Bridge Troubled Waters




                                                                                         Library of Congress
                                         Port of Seattle
                                                           The S.S. Normandie arriving in New
Every day huge shipments move through major ports          York harbor circa 1936. In those days,
Throughout the U.S.—shipments such as time-critical        the average steamship was 460 feet
container cargoes through the port of Seattle, as          long and 63 feet wide, with a draft of
shown here, and vital petroleum supplies through east      26 feet. Today, modern ships are over
coast ports. NOAA recently withdrew its tide and tidal     900 feet long and 100 feet wide, and
current charts from the port of New York and new           have drafts of up to 60 feet. Their
Jersey because they had become seriously outdated and      normal clearance from the bottom is
misleading.                                                often as small as 2 feet.
   Our nation’s waters may not be as safe as most Americans think they are. In and
surrounding many of our busiest ports, uncharted wrecks and obstructions silently wait
to be discovered by hapless mariners. U.S. maritime laws and international agreements
require our government to provide charts and related information “adequate to ensure
safe navigation in U.S. waters.” Yet U.S. coastal waters have never been completely
surveyed, and about 60 percent of NOAA’s nautical charts are based on pre-1940 data
collected with obsolete technologies. Tidal predictions for many locations are also
unreliable: two-thirds are based on data over forty years old, another 10 percent are over
sixty years old, and a few even date from the turn of the century. And because dredging
and filling change circulation patterns, even recently published data for some of our major
ports are outdated.
    Compounding these navigational hazards is the rapid, widespread growth of traffic
on U.S. waters. Waterborne commerce has tripled since 1947, and the U.S. Department
of Transportation projects that it will triple again over the next three decades. The
number of recreational boaters has nearly doubled since 1970, crowding already over-
flowing harbors. Economics of scale have driven the shipping industry toward investing
in larger ships, and they’re carrying more oil and hazardous materials than ever before.
    These factors and others—most notably, human error—contribute to nearly 3,500
commercial shipping accidents every year in U.S. waters, and 6,400 recreational
boating accidents.
    NOAA is the only producer of nautical charts for U.S. waters, although many other
organizations reproduce these charts. NOAA charts are mandatory aboard all ships
larger than 1,600 tons and are expected to be accurate and complete. The recent groundings
of the Queen Elizabeth 2 in Vineyard Sound, Massachusetts, and the Glacier Bay in
Cook Inlet, Alaska, have resulted in lawsuits against NOAA challenging its charts and
survey methods.
    Under the current system, NOAA is barely treading water. Groundings, collisions, and
spills are damaging and polluting our coastal environments, the backlogs of requests for
new surveys and charts are growing relentlessly, and NOAA’s charting budgets are steadly
eroding. As the steward of safety on our nation’s waters, NOAA must thoroughly
modernize its navigational services to safeguard lives, preserve the environment, and
enhance the growth of commerce at sea.
The Risky Business of Maritime Commerce
   Although maritime accidents aren’t as frequent as accidents on our roads, when they do
happen, their toll is substantial: loss of lives and cargo, damage to species and sensitive
ecosystems, shutdowns of ports and fisheries, rising insurance premiums and costly public
relations to repair tarnished corporate images. Below are some examples of groundings
in which the adequacy of charts, tide tables, or current tables was at issue.

                                                          “From 1980 to 1988, tankers
                                                          in the United States were
                                                          involved in 468 groundings,
                                                          371 collisions, 97 rammings,
                                                          55 fires and explosions, and
                                                          95 deaths.”
                                                                       --Natural Resources
On March 24, 1989, heading out from the port of Valdez,                  Defense Council,
the EXXON Valdez left the channel and struck
Bligh Reef, spilling 11 million gallons of crude oil                     No Safe Harbor
into Prince William Sound.
Ship               When   Where                       Damages
Queen Elizabeth 2 1992    Vineyard Sound, MA          $45 million,
(passenger liner)                                     litigation pending

American Trader    1990   Huntington Beach, CA        $30 million,
(tanker)                                              litigation pending

Hyundai 12         1991   Twelve Fathom Straits, AK   $994,000,
(cargo vessel)                                        litigation pending

Northumberland     1989   Sabine Pass, TX             11 fishermen dead
(fishing vessel)

Glacier Bay        1987   Cook Inlet, AK              $50 million,
(tanker)                                              litigation pending
   Eighty percent of the nation’s top ten ports need extensive resurveying. For example,
in Galveston Bay, which hasn’t been surveyed since 1937, large volumes of petrochemicals
and coal products were spilled in the 1,240 groundings that occurred there between 1986
and 1991. Most of the groundings were caused by adverse tide and wind conditions.
(NOAA’s tide and tidal current tables for the Bay may be off by as much as two hours.)


    Top Ten                                      1992               Critical Survey Needs:
    U.S. Ports                                Commerce              Ports and Approaches
                                            (millions of tons)        (square miles)
    Lower Mississippi, LA*                          409                      70
    Houston/Texas City.Galveston, TX                193                     522
    New York and New Jersey                         115                     112
    Delaware Bay and River                          108                     256
    Valdez, AK                                      94                        0
    Long Beach/Los Angeles, CA                      92                      15
    Norfolk/Newport News, VA                        77                      15
    Beaumont/Port Arthur, TX                        66                      238
    Corpus Christi, TX                              61                        0
    Tampa, FL                                       46                       70
    *includes ports along the Mississippi River between Baton Rouge and the Gulf of Mexico
Electronic Navigation The Wave of the Future

                                                       Rapid advances in navigation technologies
                                                    have opened a window of opportunity for
                                                    promoting the sustainable economic growth
                                                    of U.S. maritime trade and ensuring the
                                                    protection of mariners and coastal ecosystems.
                                                    State-of-the-art chart production, surveying,
                                                    and navigational technologies can be
                                                    integrated to create highly efficient, reliable
                                                    navigational systems that promise to
                                                    significantly reduce the risk of accidents
                                                    while increasing the profitability of maritime
                                                    commerce. Prototypes of these electronic
                                                    systems are being used today on military,
 NOAA’s traditional system for revising charts
 entails thousands of hours of manual labor; double commercial, and recreational vessels.
 checking information, and manually engraving color
 separations. “New” charts roll of the press as long
 as ten months after compilation, during which many
 changes may have taken place in the area charted.
Automated Nautical Charts
    The increasing use of advanced technologies for navigation and piloting is creating
a growing demand for digital nautical charts. NOAA is developing and testing a second-
generation automated nautical charting system to enable production of its paper charts
from a centralized digital nautical data base.
                                          Once the master data base is loaded, the
                                       automated system will allow for new editions
                                       of nautical charts and products to be issued
                                       more efficiently. It will enable NOAA to
                                       provide digital navigation products that can
                                       be customized with electronic chart systems.
                                       This flexibility will be integral to the success
                                       of NOAA’s modernization efforts.


   International regulations and U.S. law require commercial vessels over 1,600 tons to
carry complete official charts or their approved equivalents. NOAA and the U.S.
Coast Guard are closely working with the International Hydrographic Organization,
the International Maritime Organization and other maritime nations to develop
international performance standards for exchanging digital data. These standards will
greatly facilitate the transition from paper charts to electronic chart systems.
State-of-the-Art Survey Technologies

                                             The value of any chart—either digital or paper—lies
                                         in the accuracy of its information. Part of NOAA’s
                                         mission is to chart and update some 95,000 miles of
                                         coastline and 3.5 million square nautical miles of oceans.
 Before 1930, oceanographers surveyed
 the ocean floor by throwing a knotted   Every year NOAA receives hundreds of requests for
 lead line over the side of the ship,    surveys of perceived navigational hazards. As the number
 recording the measured depth, and       of NOAA survey vessels and days at sea has declined
 then taking another measurement a few
 meters farther along. Although this     because of budgetary constraints, the backlog of survey
 technology was surprisingly accurate,   requests has grown to more than 1,000 since 1984, driving
 it was extremely time consuming and
 missed large and potentially hazardous  home the need for highly cost-effective, efficient, and
 areas of the ocean floor. About 60      accurate surveying technologies.
 percent of NOAA’s current nautical
 charts are based on data collected with     Using state-of-the-art technologies, NOAA is finding
 a lead line or primitive echo sounders. significant navigational hazards in waters previously
                                         surveyed with conventional methods. For example, in
  April 1994, the NOAA ship RUDE, using a prototype shallow-water multibeam echo
  sounder, discovered an uncharted fifteen-foot shoal near the entrance to New Bedford
  harbor, where the current chart shows a depth of twenty-seven feet. In June 1994, the
  NOAA ship WHITING found nine uncharted wrecks and obstructions in Delaware Bay’s
  proposed traffic-separation lanes. And in June 1995, a survey done for NOAA discovered
  an obstruction in the shipping lanes of Long Island Sound rising from charted depths of
  nearly sixty feet to just eighteen feet below the surface.
Differential Global Positioning System
                                                   For centuries, determining a vessel’s precise posi-
                                               tion has been a major challenge for surveyors and
                                               navigators. Using the old sextant and triangulation
                                               techniques, by the time a navigator fixed a plot on a
                                               chart, the vessel may have sailed several minutes
                                               beyond the plotted position. At sea, knowing where
                                               you were is not good enough, particularly in adverse
                                               weather conditions, when visibility is limited.
                                                   This problem was overcome in 1993, when the
                                               Global Positioning System (GPS) became operational.
                                               Although initially designed for military use, GPS has
                                               proven invaluable for civil use as well. A far cry from
                                               traditional plotting methods, GPS satellites beam
                                               their signals from a fixed point on shore—such as a
                                               U.S. Coast Guard radio beacon—enable a ship to
Using a side-scan sonar, the NOAA ship         pinpoint its location within three to five meters. By
WHITING recently detected thirteen
dangerous rocks (circled) in Nantucket         1996, the majority of U.S. waters should have
Sound that were previously missed by           differential GPS coverage. NOAA is working closely
less accurate survey methods. The
Sound is heavily trafficked by recreational    with the U.S. Coast Guard to ensure that the differen-
boaters, large passenger ferries,              tial GPS locations are accurately connected to charts
commercial fishing boats and fuel oil barges
supplying Martha’s Vineyard and Nantucket.     through the National Spatial Reference System.
                                                                (1) Multibeam echo
                                                                sounders collect wide
                                                                swaths of precise depth
                                                                data. (2) Side-scan sonar
                                                                detects hazards by producing
                                                                images of strips of the sea
                                                                floor. (3) Airborne laser
                                                                systems can provide an
                                                                accurate, cost-effective
                                                                alternative to sonar surveys
                                                                in many areas. (4) Satellite
                                                                signals are received simul-
                                                                taneously at the survey
vessel and helicopter and a known point on shore. (5) Corrections to the satellite signals
are instantaneously transmitted from shore to the survey vessel and helicopter, providing
accurate positioning within three to five meters.
Real-Time Tide and Current Systems
                                          Half of the tidal stations in the
                                          country today are based on a system
                                          that requires going to the station and
                                          physically collecting tidal measure-
                                          ments recorded every six minutes on
                                          tape. The data are used to develop
                                          tidal datums and tidal prediction
                                          tables for the area.



                                                   A port’s maritime mission is to maximize both the
 Mechanical tidal gauges were first used in     efficient movement of ocean-borne cargo and the safety
 the U.S. in the 1850’s. This old wooden station, the vessels visiting its shores. Whether channels are
                                                of
 used in 1897 in Fort Hamilton, NY, is one of dredged through soft sediment or carved in granite,
 the earliest examples of a real-time, tide-
 measuring mechanism. On entering or leaving
                                                deepening or widening them is very difficult and costly.
 the port, mariners would view this station     As the average size of today’s commercial ships continues
 through binoculars to check the water level. to grow, the margins between their bottoms and the floors
of the channels they sail through are shrinking. Maneuverability is increasingly restricted,
raising the risk of oil spills and accidents involving other hazardous materials.
    The growing unacceptability of this risk can be seen in today’s soaring cleanup and liti-
gation costs. Yet, accompanying the demand for enhanced environmental protection is
industry’s shift to “just-in-time” manufacturing, along with strong consumer demand for
competitive prices. Because of uncertainty about tides and currents, large commercial
carriers and tankers are delayed at ports and offshore as they wait for optimal transit conditions.
                                                               Physical Oceanographic Real-
                                                               Time Systems allow ships to
                                                               access real-time nautical data
                     3                                         from a variety of instruments
                                                         4     at several locations in ports and
                                                               harbors. (1) The Acoustic Dop-
                                                               pler Current Profiler (ADCP)
                                                               measures the speed and direction
                                                               of the current at various depths
                               2                               between the surface of the water
                                                    Keeping
                                              Current With and the sea floor. (2) A receiver
                                                 Real-Time near the ADCP transmits the
         1                                     Technologies information to a central receiving
station, which may be many miles away. (3) NOAA water-level stations throughout the area
automatically relay to computers at the central receiving station information on water levels,
winds, and water temperatures. (4) The central receiving station makes this information avail-
able to the public via telephone using a voice data system, via PC/modem dial-up systems, and
via Internet. The National Weather Service also accesses this information for broadcast over
NOAA Weather Radio.
                                                With state-of-the art digital technologies, real-time and
                                                predicted tide and current information is available by
                                                telephone or computer. This data plot from Baltimore
                                                Harbor shows the great disparity between the
                                                predicted astronomical tides (blue), which do not
                                                include the effects of winds and river flows, and the
                                                actual tides (red), which can be predicted by
                                                modern techniques.




    With accurate, real-time information and modern forecasts, newer, deeper-draft ships can
safely adjust loads to use the available draft margins. Physical Oceanographic Real-Time
Systems (PORTS) allow ships—berthed or under way—to access real-time data from a
variety of instruments that measure currents, winds, and waves, along with water levels (tides),
depths, temperatures, and salinity. These data enable much more accurate tide and current
predictions, reducing travel delays and increasing traffic-handling capabilities. They are also
instrumental in preventing and responding to spills of hazardous materials and oil, predicting
coastal floods, and conducting scientific research. The success of PORTS in Tampa Bay, FL,
is fueling support for the establishment of these systems at other ports around the country.
Electronic Chart Systems                                        This close-up of an electronic
                                                                chart system displays precise
   Electronic chart systems will                                information on the ship’s
radically change the face of maritime                           position, course, speed, draft,
                                                                soundings, way points, and
navigation. They can accurately                                 warning system. The circles
display a vessel’s real-time location,                          show the ship’s distance from
                                                                various fixed points and
automatically update that information                           other vessels. The dotted red
every one to two seconds, and                                   line shows the ship’s planned
distinguish among floating aids to navigation, vessels,         route; the solid white line, the
                                                                actual course taken; and the
and points of land. Radar images can be superimposed            dotted yellow line, the pro-
on thse “smart charts,” along with data from real-time tide,    jected course of the ship if it
                                                                doesn’t turn at the specified
current, and marine weather-forecasting systems. And by         point.
analyzing a vessel’s course and speed and the nautical chart
data, these systems can instantaneously detect hazards,
estimate how long it would take torun into them, and automatically sound an alarm.
   The simplest electronic chart system can be run on an inexpensive laptop computer,
while fully functional systems require more sophisticated computer interfaces and displays.
The former are already being used by yachtsmen and small fishing vessels, and the latter
by large ships, such as tankers, freighters, and ferries.


                        Although the simplest electronic chart systems don’t support all the functions
                        of their more sophisticated counterparts, they meet the safety needs of many
                        small vessels and can cost less than a thousand dollars.
                                                Hailed as the most significant advance in navigation
                                                since the advent of radar, electronic charts can
                                                provide mariners with all the information they
                                                need for safe and efficientnavigation. This
                                                electronic system aboard the Clipper Cruise
                                                Lines’ NANTUCKET CLIPPER” gives the
                                                captain both a broad overview and detailed
                                                close-ups of navigational aids and hazards in the
                                                surrounding area.
                                                 A joint U.S.—Canadian study of West
                                                 Coast shipping completed in July 1990
                                                 found that electronic chart systems
                                                 could reduce the total number of acci-
                                                 dents by 15-19 percent. Recent analysis
                                                 by the Marine Policy Center in Woods
Hole, MA, produced similar estimates of preventable accidents and indicated that using
electronic charts could avert losses averaging $3 million a day.
    The U.S. Coast Guard and NOAA are participating in a joint government—industry pro-
ject to demonstrate, test, and evaluate the Electronic Chart Display and Information System
(ECDIS). By dramatically increasing the speed, ease, and accuracy of performing navi-
gational tasks and help navigators concentrate on avoiding collisions and groundings.
    Today’s most sophisticated systems incorporate artificial intelligence. A prototype system
is in use in tanker operations on the West Coast. If no one aboard responds to the automatic
alarm built into the electronic chart system, the system gives the ship a rudder command and
the ship automatically turns away from the hazard.
                                                 In August 1993, the cruise ship Yorktown Clipper struck a charted,
                                                 underwater rock in Glacier Bay. Although the 175 passengers and crew
                                                 members escaped injury, and the pristine environment of Glacier Bay
                                                 National Park remained unspoiled, the ship’s hull was ruptured in
                                                 several places, with damages amounting to about $3 million. The
                                                 National Transportation Safety Board found that the accident’s probable
causes were failure to plot the ship’s courses and positions and inadequate oversight of the ship’s navigation. It noted
that an electronic chart system would reduce the risk of groundings by providing watch officers a continuous, accurate
display of their position and by giving them “more time and better information for projecting any proposed maneuver
and judging its consequences.” The repaired Yorktown Clipper now has an electronic chart system, even though full
approval and availability of certified digital data are yet to come.

                                                                          “If an electronic charting system
                                                                          and the DGPS (differential global
                                                                          positioning system) had been
                                                                          available and installed on inland
                                                                          towing vessels such as the
                                                                          Mauvilla, the accident at the
                                                                          Big Bayou Canot railroad
                                                                          bridge could have been avoided.”
                                                                          --National Transportation Safety
                                                                            Board
   In September 1993, in a dense fog near Mobile, Alabama, the tug Mauville and its
   barge rammed into a railroad bridge, causing the subsequent derailment of an
   Amtrack train. Of the 210 passengers, 47 were killed and numerous others were
   injured.
Potential Losses of Natural Resources From Spills of Hazardous
Commodities
                                         Every day ships carry hazardous
                                       commodities into U.S. ports. A spill
                                       the size of the Exxon Valdez spill,
                                       shown along the East and West Coasts
                                       of the United States, would have
                                       devastating consequences for our
                                       nation’s marine sanctuaries and estuarine
                                       reserves—not to mention the millions of
                                       tourist dollars lost from beach closings.




  S.C.Delaney/U.S.EPA
S.C. Delaney/U.S.EPA




                       The table that follows estimates (in 1990
                       dollars) damages from spills of hazardous
                       cargo as they relate to fourteen categories
                       of fish, sea birds, and marine mammals.
                       It accounts for lost revenue from the closing
                       of shellfish beds, decreases in the size and
                       productivity of fisheries, changes in fish
                       market prices, and effects on seafood pro-
                       cessors and other supporting businesses.
                                                                 Spill Size
    Zone                           Commodity            Small           Catastrophic
                                                     (8,000 gal.)      (4,000,000 gal.)
Mobile, AL                           Gasoline            $435,000        $1,818,032,000
Anchorage/Cook Inlet, AK              Crude               432,000          20,920,000
San Francisco, CA                    Gasoline             134,000         232,032,000
Tampa, FL                          #1 Fuel Oil            153,000          47,486,000
Chesapeake North/Baltimore, MD       Gasoline              16,000          764,636,000
Wilmington, NC                      Alcohol               841,000          258,592,000
Philadelphia/Delaware Bay, PA      #6 Fuel Oil            127,000           63,712,000
Providence, RI                       Gasoline              84,000          459,760,000
Houston/Galveston, TX                Alcohol           10,339,000        1,055,704,000
Puget Sound, WA                      Gasoline              26,000           75,984,000

Sources: Alaska Fish and Game, vol.21, no.4, U.S. Coast Guard, Port Needs Study.
All Winners In the Race for Modernization

   Historically, the shipping industry and the military have been the primary users of
NOAA’s navigational services. Over the years, their demand for accurate, reliable navi-
gational information and services has grown steadily with the nation’s economic and
military strength. Many other users – commercial fishermen, tug’ and barge operators,
recreational boaters, the survey community, and coastal zone managers, engineers, and
scientist – have benefited as well, along with society at large.
   NOAA’s modernization program is essential to the efficient provision of today’s and
tomorrow’s navigational services. All of these groups will be winners in safer, more
predictable waters.

Commercial Shipping
   The health of maritime commerce is critical to the health of the U.S. economy. More
than 98 percent of our nation’s foreign trade by weight is carried by sea. In 1990, 850
million tons of cargo valued at $500 billion moved through our waterways and in 1991 the
commercial shipping industry supported 1.5 million jobs, provided personal income of
$52 billion, and generated $14 billion in federal taxes and $5.3 billion in state and local
taxes. While foreign trade accounts for more than 20 percent of our national’s gross
domestic product today, it is expected to climb to 30 percent by the year 2000.
     Efficiency and safety dictate the bottom line of today’s intensely competitive shipping
industry. Shipping delays caused by taking longer routes around poorly charted areas or
waiting for confirmation of uncertain tides can cost the industry as much as $3,000 an
hour. Inches matter. The coal industry, for example, can be seriously damaged if ships
can’t be fully loaded or if smaller vessels have to be used. And the cleanup and environ-
mental costs of an oil spill continue to rise.
    The potential for environmental damage from future oil spills is significant, given that
petroleum and petroleum-related products account for over half of the total ton-miles of
all waterborne commodities, and our nation’s dependence on imported oil continues to
grow. Largly in response to the EXXON Valdez grounding, Congress enacted the Oil
Spill Prevention Act in 1990, requiring all oil tankers to have double hulls by 2015. The
incremental cost of this retrofitting is estimated to be $10-$20 billion. Although double
hulls should reduce the volume of spills by about 70 percent, they won’t prevent
accidents and about 30 percent of the oil carried by the ships in those accidents will still
escape into our waters.
    Analysis of the Valdez voyage has shown four distinct points at which an alarm would
have sounded if an electronic chart system had been in use. When compared to EXXON’s
estimated $3 billion cleanup cost, the $100,000 price tag for the most sophisticated
electronic chart system (or even the $160 million cost for modernizing NOAA’s navi-
gational services) might be viewed as a mere drop in the ocean.
Real-World Profits from
Real-Time Technologies
                           The international trend in commercial shipping is toward
                           fewer but larger vessels. With better information about water
                           levels, currents, and obstructions, the newer deeper-draft ships
                           can enter U.S. harbors and carry more cargo for export.
                               The Association of Maryland Pilots recently raised Baltimore’s
                           maximum draft from 39.5 feet to 41 feet—a direct result of the
                           pilots’ use of real-time water-level data from NOAA gauges in
                           Chesapeake Bay. Similar impacts have been seen in the
                           Delaware River and Bay System, in Portland, Oregon, and in
                           Tampa, Florida. Estimated revenue increases range from
                           $36,000 to $288,000 for each additional foot of draft for
                           large bulk and container ships.
                               National economic models indicate that if port shoaling or
                           uncertainty about water levels added one percent to the cost of
                           crude petroleum imports, $3.1 billion would be lost from our
                           gross domestic product, alone with 61,000 jobs.




“…had it (ECDIS) been installed on
the EXXON Valdez, that ill-fated tanker likely would
never have run aground.” --Technology Review, October 1994
National Defense

                                                    Because of its ongoing need to maintain sea power,
                                                 the U.S. military will be a primary beneficiary of
                                                 NOAA’s modernization program. Over 40 percent of
                                                 the charts NOAA publishes are purchased by the U.S.




                                     U.S. Navy
                                                 military. Charts and data necessary to submarine and
                                                 surface navigation are used by the Navy in training
The U.S. Navy is committed to outfitting         exercises and are essential to military preparedness.
the bridges on all of its ships with
electronic chart systems over the next           During Operation Desert Storm/Desert Shield, the
four to five years.                              most intensive buildup of American forces in history,
                                                 U.S. ports handled two-thirds of the military cargo.

   The navigational information the military depends on today is incomplete, and six of
the Navy’s home ports critically need more accurate and reliable data. For example,
Norfolk naval base, the largest naval port in the world, houses a vast fleet of deep-draft
ships and is a major thoroughfare for large commercial ships and barge traffic. Numerous
obstructions throughout the area need investigation, and the port’s sandy, silty bottom is
constantly changing. With contemporary surveys, a fully operational real-time marine
forecasting system, and electronic charts on the bridges of all of its ships, the U.S. Navy
will be in a far better position to respond quickly and efficiently to military emergencies.
 Commercial Fishing
   Commercial fishing is one of the most dangerous occupations in the United States.
Each year an average of 250 fishing vessels are lost along the Atlantic, Gulf, Pacific, and
Alaskan coasts, and over 100 fisherman lose their lives at sea. Alarmed by these statistics,
Congress passed the Commercial Fishing Industry Vessel Safety Act of 1988, including
a requirement that fishing vessels on the high seas carry nautical charts and a full set of
navigational equipment.
   Many fishing accidents are caused by human error and occur in remote areas that are
poorly charted. Electronic chart systems with accurate data can help fishermen reduce
groundings by 80 percent. Besides making navigation safer for commercial fisherman,
                                         modernizing NOAA’s navigational services will increase
                                         their operational efficiency by reducing gear damage and
                                         losses from accidents and will boost their productivity by
                                         facilitating their search for fishing grounds.
                                            Commercial fishermen will also reap benefits from the
                                         environmental protection that modernized navigation
                                         affords. When the Glacier Bay grounded in Cook Inlet
 Commercial fishing is a major national  in 1987, spilling 130,000 gallons of oil, the local fishery
 industry. In 1992, about 9.6 billion
 pounds of fish, valued at about $3.7
                                         was closed for the entire year, resulting in $50 million in
 billion, were landed at U.S. ports.     damages and lost revenues, and decreases in the size and
 Today, commercial fishing operations    productivity of the fishery. By making navigation safer
 employ over 364,000 people and supply
 thousands of supermarkets, speciality stores
 and restaurants throughout the country.
for commercial shippers, electronic technologies will reduce the risk of spills of oil and
hazardous materials and thus will protect national fishing grounds and nurseries.
Recreational Boating and Tourism
                                                         Between 1970 and 1993, the number of
                                                     recreational boats owned by Americans nearly
                                                     doubled—from 8.8 million to 16.5 million. This
                                                     increase in the number of mariners who navigate
                                                     in areas not frequented by commercial shippers
                                                     or the military has heightened the need for
                                                     modern navigational services and new charts.
Although the number of fatalities from                   Because recreational boaters have limited
recreational boating has decreased over the last     storage space, they often navigate without
thirty years, accidents and injuries have steadily
climbed and the reported property damages            information and tools critical to their safety. With
have increased sevenfold to $35 million.             electronic chart software that can run on laptop
Electronic navigational technologies will
help yachtsmen safeguard their lives and their       computers, all the necessary navigational infor-
investments.                                         mation is available in one easy-to-use, compact
                                                     format that shows shoreside features and
                                                     services.
Private Value-Added Sectors

   Products developed by the U.S. government are not copyrighted. They can be freely
reproduced or modified to fit particular applications. About a dozen U.S. companies copy
NOAA charts and repackage them in a variety of formats for resale. If NOAA were
unable to conduct the surveys and construct the charts on which these off-shoots are
based, these companies wouldn’t have the resources to produce the products they do
today.
   The strong demand for modern navigational systems and the clear opportunities for
exploiting leading-edge technologies have prompted several companies to test the waters.
The new industries that will result from the continued demand will create skilled jobs,
personal income and tax revenue.
Coastal Management and Research

  The increasing use of geographic information systems by government agencies, coastal
managers, engineers, and scientists is fueling the demand for digital data from nautical
charts and marine-forecasting systems that they can customize to meet their diverse needs.
   Tidal datums, which define all legal boundaries along coastal areas, are becoming
essential to all legislators and decision makers for coastal resource development and
management, transportation, recreation, public works projects and emergency planning
and evacuation. By analyzing digital chart data, coastal managers can calculate how
                                           far from the high-tide line real estate developers
                                           should construct new buildings and accom-
                                           panying infrastructure to protect them against
                                           erosion and floods. Or they can develop maps
                                           that identify wetlands, local sources of pol-
                                           lution, and other data critical for the sustained
                                           vitality of the area’s natural resources.

                                           Photogrammetric mapping of coastlines can provide
                                           information for managing cleanup activities, characterizing
                                           benthic communities and marine habitats, measuring
                                           nearshore topography, assessing environmental damage,
                                           and delineating shorelines.
Launching a New Era Reinventing NOAA’s Navigational Mission




                               Steadily decreasing resource levels have forced
                               severe cutbacks in NOAA’s navigational services.
                               At the present level of effort and using current
                               techniques, surveying today’s critical areas
                               would take forty years. NOAA’s modernization
                               strategy would more than double productivity,
                               with only a 50 percent increase in resources.
    Over the past decade, NOAA’s resources for performing its basic ongoing mission
have been steadily eroding. As electronic chart systems become standard equipment
on commercial vessels and as local, national, and international authorities certify their
use, the demand for NOAA to modernize its navigational services will rise dramatically.
The challenge for NOAA will be to increase the quantity, quality and speed of delivering
these services for the same amount of money or less than it is spending today.
    NOAA has devised a five-year modernization strategy that could achieve this vision
and at the same time eliminate the backlogs that are inundating its staff. NOAA’s
current annual budget for providing navigational services and products is approximately
$50 million. Modernization would cost an additional $30 million a year over five years.
Beyond that point, the efficiencies of a thoroughly electronic operation would kick in,
and NOAA’s current resource levels should be sufficient to fully respond to future
demand.
    Federal funding will constitute a major portion of NOAA’s modernization investment
portfolio. NOAA will also explore the potential for sharing costs with other federal,
state, and local agencies; entering into public-private partnerships; using Cooperative
Research and Development Agreements; contracting for services; and commercializing
its products. In the true spirit of reinventing government, this modernization will pave
the way for entrepreneurs to transform the business of providing navigational products
and services.
NOAA’s Five-Year Modernization Strategy
Modernize surveying services - $40 M
•Accelerate surveying of areas of critical need around major harbors and their approaches.
•Use state-of-the-art sonar and laser survey technologies and platforms to obtain more
 extensive coverage with greater detail.
•Ensure the quality of survey data from NOAA ships and a wide range of other sources,
 including contracts, cooperative projects, and partnerships.
Modernize nautical charting services - $30 M
•Fully load the automated charting system data base.
•Convert to digital production of paper charts and electronic chart data.
•Accelerate publication of new and revised chart products.
Modernize marine forecasting services - $30 M
•Develop PORTS capability in ten major U.S. ports.
•Complete modernization of the National Water Level Observation Network with the
 Next Generation Water Level Measurement System.
•Modernize tidal prediction products.
•Maintain a National Water Level and Coastal Circulation Data Center.
Modernize survey fleet - $60 M
•Replace the three remaining survey ships.
Collecting Survey and Real-Time Data
    State and local coastal resource managers are seeking more complete and more
current digital data for nautical charts in their areas and for other applications related to
coastal management. NOAA has begun to form alliances with these managers to support
the collection of local navigational and survey data.
    For example, NOAA recently arranged a partnership with the New York-New Jersey
Port Authority, the Sandy Hook Pilot’s Association, and the Coast Guard to provide
real-time observations and forecasting at Bergen Point, the most hazardous turn in the
New York-New Jersey harbor. And through cooperative efforts with local interest groups,
real-time data are now available on the water levels of the Columbia River and the
Chesapeake and Delaware Canal. Other ports and shipping lanes can be similarly served
through arrangements for joint operation and maintenance.
    NOAA will take advantage of is authority to retain private contractors to conduct
hydrographic surveys to NOAA specifications. NOAA will also work closely with the
U.S. Army Corps of Engineers, the U.S. Navy, and the U.S. Geological Survey to share
data and to avoid duplication of efforts. The goal will be to ensure that all of the most
critical areas in the contiguous United States are surveyed within five years of imple-
menting the modernization strategy (ten years for Alaska). At the same time, NOAA
will maintain an in-house, state-of-the-art capability for collecting hydrographic data
to enable it to set standards, train personnel, develop and test advanced technology, and
meet national requirements.
Disseminating NOAA’s Nautical Products

   To satisfy user demands better and more efficiently, NOAA will explore partnerships
with private companies that will print, publish, and distribute its nautical charts and
information products. By using market forces and creating new business opportunities,
NOAA will ensure that the public’s needs for navigational products are met efficiently.


    “The key to successfully responding to these challenges is for
    NOAA to focus its nautical charting program activities on the tasks
    associated with building and managing the nautical information data
    base and to seek partnerships with the private sector and other
    federal and state agencies in fulfilling the other components of the
    nautical charting mission: collection of survey data and product
    dissemination.” --National Research Council
     Fully developing partnerships for disseminating NOAA’s nautical products will most
likely require new tools to protect intellectual property rights. Because NOAA may lack
the legal authority to license its data, in most cases legislation would have to be enacted
to encourage the private-sector investments needed to produce new products by giving
them exclusivity or protection. NOAA would also need to develop processes for certifying
data products for navigational uses. Several possible complementary routes exist within
this broad approach, including:
•Copyrighting nautical charts.
•Supplying raw digital data to private printing ventures, and collecting royalties or
 license fees based on privately copyrighted product sales.
•Changing the cost recovery law to allow NOAA to retain the funds recovered from the
 sale of charts and other products and invest them in program development.
•Obtaining royalties from the dissemination of products developed through Cooperative
 Research and Development Agreements.

                                                 Managing the Nautical Information
                                                 Data Base

                                                      The keystone of NOAA’s modernization
                                                  strategy will be the design, construction, and
                                                  maintenance of NOAA’s master nautical data
                                                  base. With additional resources, this job can be
                                                  completed within five years. After that point,
 NOAA has signed an agreement with BSB
Electronic Charts to perform cooperative          the data base can be maintained with existing
research on the development of electronic         resource levels by using the automated systems
nautical charts, systems, software, and other
related matters. Shown here is a prototype        now being developed.
for the raster chart image that BSB expects to        The data base will support the efficient and
commercialize upon completion of joint
NOAA/BSB research and development work.           timely production of new and revised charts
and data products that are fully consistent with international units, standards, and quality
levels. Water-level and current sensors around the nation will be connected through
networks to a National Water Level and Coastal Circulation Data Center. This will
ensure the consistency and quality of data and forecasts that are vital to today’s and
tomorrow’s marine commerce.
         Digitizing nautical survey data
         for incorporation into the charting
         data base is highly labor intensive.
         To date, only 5 percent of the data
         for NOAA’s suite of 1,000
         nautical charts has been loaded
         into the data base.
Sustainable Development Through Modernization

   NOAA’s mission to provide navigational services began in 1807, when Thomas
Jefferson formed the Survey of the Coast. As technological break-throughs have
revolutionized marine navigation over the years, NOAA’s strategy for fulfilling this
mission has simultaneously evolved.
   While maritime navigation will always be hazardous, new electronic technologies
promise to help mariners significantly reduce the risk of accidents and spills. By over-
hauling America’s marine transportation infrastructure, these technologies will heighten
the competitiveness of U.S. ports and the shipping industry and will inject new vitality
into the nation’s economy. And they will be critical in supporting the environmental
stewardship roles of coastal zone planners, regulatory officials, and researchers as
they work to ensure the safe, sustainable, and efficient development of our coastal
and ocean resources.




   A clean and safe environment, together with
   sustained economic security, are the most
   concrete manifestations of what all Americans
   deserve. They are the goals of sustainable
   development.
   This brochure was prepared by the National Ocean Service (NOS), the primary
federal civilian agency responsible for the observation, measurement, assessment
and management of the nation’s coastal and ocean areas. NOS serves as the trustee
for these resources and provides products and services that protect millions of lives,
billions of dollars in property, and irreplaceable natural resources.

				
DOCUMENT INFO
Shared By:
Categories:
Tags:
Stats:
views:2
posted:3/20/2012
language:
pages:38
yaohongm yaohongm http://
About