Cours_moteurs_elec

Document Sample
Cours_moteurs_elec Powered By Docstoc
					 Les moteurs électriques
      Isabelle Chênerie, Patrick Ferré
chenerie@cict.fr, patrick.ferre@lget.ups-tlse.fr
                                                   1
  Ces diapositives constituent le support de cours.
  Elles seront complétées par des démonstrations
              et explications en amphi.
La présence en cours est donc fortement conseillée.




                                                      2
Chapitre 1

Présentation des moteurs
électriques



                           3
       Fonction d’un moteur


puissance électrique     moteur     puissance mécanique

 fournie par                           disponible
 l’alimentation                        sur l’arbre
 électrique                            du moteur
 (puissance absorbée)                  (puissance utile)


    Pertes = puissance absorbée – puissance utile
                                                           4
                        Animation
                  Force de Laplace
                              
                       dF  idl  B
                                                                   
                                                                 dF  0

        courant                     courant
                                                              courant

                                             
                 B                          B
dF                         dF                                     
                                                                  B
     règle des 3 doigts de la main droite : courant – champ - force       5
Principe de fonctionnement
                       
                     dF  0


  courant                              
                B                     B
  dF                   dF
                              courant

              
            dF  0


                                            6
  Eléments de base d’un
        moteur
                                      Exemple
Le stator (ou inducteur) :
partie fixe,
produit le champ             stator
magnétique


Le rotor (ou induit) :
partie mobile,
en rotation                             rotor

                                                7
8
      Les différents types de
              moteurs
           • Moteur à courant continu
            avantage : réglage de vitesse facile



Si l’excitation est série       Collecteur + balais
il peut fonctionner en          alimentent l’induit
 alternatif                     = point faible
= moteur universel                     (usure)


                               Utilisation décroissante
                                                          9
   Les différents types de
           moteur
        Moteur asynchrone
        Avantage : robuste et simple


Alimenté en              - sans collecteur
alternatif triphasé        ni balais
                         - rotor à bagues* ou à cage
                         *utilisation décroissante


            = le plus utilisé
                                                     10
Les différents types de
        moteur
   Moteur pas à pas
   = petit moteur de précision

 Système de commande électronique

      impulsions électriques

      déplacement angulaire du rotor
      (4 à 400 pas par tour)

                                       11
       Exemples d’utilisation
Moteur à courant continu   Petits outils,
(batteries, piles)         appareils électroportatifs
                           sans fil
Moteur universel           Petit et moyen
(secteur)                  électroménager
                            (perceuse, aspirateur)
Moteur asynchrone          Machines outils
(triphasé)                 (nettoyeurs haute pression)

Moteur pas à pas           Mécanique de précision
(commande électronique)    (imprimante, lecteur CD)

                                                         12
Chapitre 2

Moteurs à courant continu



                            13
             1 . Généralités
        I                                 I
                                  R



  M            U           E’                 U




Schéma fonctionnel   Schéma électrique équivalent
                             en continu
                                                  14
1-a : 2 modes d’alimentation

              Rrotor     I             Rrotor   Rstator   I


  E’                         U   E’                           U




       Excitation séparée             Excitation série
       - inducteur = circuit          - induit et inducteur
       indépendant (donc              dans le même circuit
       2 alimentations)               - une alimentation unique
       - alimentation continue        en continu
        pour l’induit                                         15
1-b : équations électriques

   Loi d’Ohm    U (V )  E ' RI        (convention récepteur)


          excitation séparée : R = Rrotor
          excitation série : R = Rrotor + Rstator

   Fcem induite E ' (V )  K E '

       flux à travers les spires de l’induit (Wb)
        vitesse de rotation (rad/s)
            K constante


         Vitesse de rotation = E’ / KE’  = (U-RI) /KE’
               rad/s) = N(tr/mn).2/60 = n(tr/s).2           16
1-c : bilan de puissance


         Pabsorbée  UI  Ppertes  Putile

 Type de      effet Joule   Pertes ferro- pertes
 pertes                     magnétiques mécaniques

              résistance    hystérésis,   frottements
 Cause        induit et     courants de
              inducteur     Foucault
              ventilation   matériaux     roulements,
 Remède                     (Fe,Si)       lubrifiants
                            feuilletage
                                                        17
Représentation schématique du bilan de puissance




                        PJ

  Pertes fer + Pertes méca = Pertes collectives = constante
              pour tout point de fonctionnement
                                                          18
1-d : relation puissance - couple


                P       =   C    .   
           
           

           Puissance = couple . vitesse



               Watts = (N.m) . (Rad/s)

 A tout terme de puissance on peut donc associer un couple
                                                        19
 1-e : couples

                               Relation de définition

Couple moteur                  Putile = Cmot . (1)

Couple de pertes               Pfer + Pméca = Cpertes . (2)
   collectives
Couple
électromagnétique              Cemag = Cpertes + Cmot


 (1): la puissance se répartit entre couple moteur et vitesse
 (2) : pertes constantes, mesurées par un essai à vide
 (3) : Cemag   = KCI
                                                                20
1-f : rendement

                                  Putile
 • Définition générale        
                                 Pabsorbée

                                            Cmot  
         Moteur à excitation série       
                                             UI
         Moteur à excitation séparée :
                                                    Cmot  
   - inducteur à aimant permanent              
      pas de pertes dans le circuit inducteur           UI
                                               Cmot  
   - inducteur bobine                   
      pertes dans le circuit inducteur       UI  PJ inducteur
                                                                 21
2 . Moteur à courant continu
       excitation série




                           22
2-a équations du moteur

 • Tension d’alimentation U  E'RI
       avec   I stator  I rotor  I


 • Fcem induite E '  K E '
       avec      I       (machine non saturée)

                             U  RI
       Vitesse            
                              K E '
 • Couple électromagnétique            Cemag  K C I
                                                        23
2-b fonctionnement moteur + charge
    à vitesse constante
             Crésistan t            Cmot
              charge              moteur

              régime établi ou permanent

        Crésis tan t  K C I  C pertes , la charge impose le courant


     A vide, et si l’on néglige les pertes,
                  Crésis tan t  0  I  0    
                           emballement du moteur                  24
2-c pour régler la vitesse :

                       U  RI
             
                        K E '
          Avec une alimentation variable
          il est possible de régler la vitesse.


    Remarque : si la machine est peu chargée,
    I et  sont faibles,
    et  devient très important

    un moteur série ne doit pas fonctionner à vide

                                                     25
2-d phases du mouvement de la charge

       vitesse




                                                             t

      accélération régime établi         décélération
   C mot  C rés  C acc C mot  C rés   C mot  C rés  C ral

    couple            définit le point couple de
    d’accélération    de               ralentissement
                      fonctionnement

                                                                 26
2-e représentation couple – vitesse
    (caractéristique mécanique)


     Cemag  C pertes  Cmot  K C I
     U  E ' RI  K E '  RI
       I
                                          2
                                U      
            Cmot    K C  
                             K    R   C pertes
                                        
                             E'        

                                                       27
       C mot                Si les pertes sont négligées :

                            R = 0 et Cpertes = 0

                                   Cmot varie en 1/2




                                    

Couple moteur élevé au démarrage,
Exemple fort couple + faible vitesse (traction, laminoirs)
Exemple faible couple + forte vitesse (centrifugeuse)
                                                             28
3 . Moteur à courant continu
     excitation séparée




                           29
3-a équations du moteur


• Tension d’alimentation U  E'RI
      avec          R  Rrotor


• Fcem induite E '  K E '
              est imposé par l’inducteur seul
                            U  RI
          Vitesse        
                             K E '
• Couple électromagnétique       Cemag  K C I
                                                   30
3-b démarrage

               U  E'RI
             nulle au démarrage

          U  E' U
       I         quelques 100 A
            R    R
       au démarrage il y a surintensité


     Pour limiter la surintensité :

     • augmenter Rrotor par un rhéostat de démarrage
     • démarrer à tension U faible
                                                       31
3-c pour régler la vitesse :

                            U  RI
                 
                             K E '
             Avec une alimentation variable
             il est possible de régler la vitesse
         (et de limiter la surintensité au démarrage)


    Remarque :
    Cemag  K C I  C pertes  Cmot  C pertes  Crésis tan t

                                en régime permanent
                 I  f (Crésis tant )
                                                                 32
3-d représentation couple – vitesse
    (caractéristique mécanique)

          Cemag  C pertes  Cmot  K C I
          U  E ' RI  K E '  RI
                         U  K E '
         Cmot    KC                C pertes
                             R
                    C mot




                                                 33
Chapitre 3

Moteur asynchrone triphasé



                        34
       1 - Alimentation triphasée

Distribution : 3 phases 1,2,3 ou A,B,C ou R,S,T
               et un neutre N




        Tensions                         Tensions
        simples                          composées
                                                     35
1-a : Tensions simples
                        v1 (t )  V 2 sin t 
                                                2 
 Equations horaires :   v2 (t )  V 2 sin  t     
                                                 3 
                                                2 
                        v3 (t )  V 2 sin  t     
                                                 3 




                                                        36
Triphasé équilibré direct :           Vi  0


Vecteurs de Fresnel :




           V1  V2  V3  V
           V / V  V               V3 / V1  2
              1   2      2   / V3                     3   37
 1-b : Tensions composées




Vecteurs de Fresnel
pour un système
équilibré direct
                            38
                                            
                       u12  U 2 sin(t        )
                                            6
                                            
Equations horaires :   u23  U 2 sin(t  )
                                          2
                                          7
                       u31  U 2 sin(t     )
                                           6



              




                                                    39
1-c : Relation entre U et V




                  U V 3

                              40
1-d : Récepteur triphasé équilibré




     ii : courants de ligne
     ji : courants dans les charges ou de phase
                                                  41
1-d : Récepteur étoile
     Tensions et courants (récepteur étoile)




                        Ii  Ji                42
   Puissances (récepteur étoile)



 On pose     v  i   Z,
 cos   facteur de puissance




Puissance active          P  3 VI cos  3UI cos (W )
Puissance réactive       Q  3VI sin   3UI sin  (VAr)
Puissance apparente S  3VI  3UI        (VA)
                                                           43
Pertes par effet Joule (récepteur étoile)
pour les 3 phases




                    3 2
                PJ  RI         avec R = 2r
                    2
                                              44
1-e : Récepteur triangle
    Schémas électriques




                           45
Vecteurs de Fresnel (récepteur triangle)




                                           IJ 3




                                                   46
Puissances (récepteur triangle)


                        On pose      u   j   Z,
                        cos      facteur de puissance




                        P  3JU cos  3UI cos
                        Q  3JU sin   3UI sin 
                        S  3JU  3UI

                                                         47
Pertes par effet Joule (récepteur triangle)
pour les 3 phases




                                            3 2
                                        PJ  RI
                                            2
                                        avec R = 2r/3


                           


                                                        48
Résumé :


                                        Couplage étoile            Couplage triangle

     Relation entre U et V                  U V 3                      U V 3

      Relation entre I et J                   IJ                        IJ 3

          Déphasage
                               
                                               
                                             I,V
                                                              
                                                                           
                                                                          J,U
                                                            
       Puissance active                   P  3VI cos                  P  3UJ cos
                                          P  3UI cos                  P  3UI cos


                                                       3 2                         3 2
         Pertes Joule                    P  3rI 2      RI          P  3rJ 2      RI
                                                       2                           2


   Résistance équivalente                     R  2r                        2
                                                                          R r
                                                                            3
      Puissance réactive                  Q  3UI sin                  Q  3UI sin
                                   
     Puissance apparente                    S  3UI                     S  3UI
                                                            
     Facteur de puissance                      cos                         cos
                                                             

                                                                                      49
1-f : relèvement du facteur de puissance
       récepteur triangle :


                                                         Qc  CU 2
                                                         QcTot  3Qc  3CU 2



                                           
                            Puissance active     Puissance réactive   Facteur de puissance


    Charge seule
                                   P                Q  Ptg                 On a
                                                                            cos
                                                   Qc  3CU 2
      Les trois
 condensateurs seuls               0                                          0
                                         
      Charge                                                              On veut
        +                          P            Q' Q Qc  Ptg'        cos' cos
   condensateurs                                                                   50
Formules de calcul des condensateurs :




                    Ptg  tg '
 Triangle :      C
                       3U 2



                     Ptg  tg '
  Etoile :        C
                         U 2


                                         51
2 - Moteur asynchrone triphasé
2-a : principe de fonctionnement



-3 enroulements
- p paires de pôles

          f
     ns 
          p



                                   52
2-b : schémas




                53
2-c : Phénomène de glissement




                                54
2-c : Phénomène de glissement


                                   ns  n
  Glissement : g                g
                                     ns
      - à vide :               n  ns  g  0
      - en charge              n  ns  g 1

                    
                    
           Ordre de grandeur : quelques %

                                                55
2-d : Caractéristique mécanique T(n)




            Zone linéaire :   T n
                                       56
2-d : Caractéristique mécanique T(g)




            Zone linéaire : T  g
                                       57
2-e : point de fonctionnement




                                58
2-f : bilan des puissances




    Puissance électrique absorbée :       Pa  3UI cos
                                              3 2
    Pertes par effet Joule au stator :   PJs  RI
                                              2
    Pertes par effet Joule au rotor :    PJr  gPtr
                              
    Puissance utile = puissance absorbée - pertes         59

                              

				
DOCUMENT INFO
Shared By:
Categories:
Stats:
views:9
posted:2/12/2012
language:French
pages:59
Description: COURS Electricity