Inverse Trigonometric Functions Differentiation

Document Sample
Inverse Trigonometric Functions Differentiation Powered By Docstoc
					Inverse Trigonometric Functions:
         Differentiation
    Interactive Trigonometry:
• http://colalg.math.csusb.edu/~devel/IT/

• http://www.ugrad.math.ubc.ca/coursedoc/
  math100/notes/zoo/invtrig.html

• http://www.math.ucdavis.edu/~kouba/Cal
  cOneDIRECTORY/invtrigderivdirectory/Inv
  TrigDeriv.html
 Inverse Trigonometric Functions Definition:
 For x in the   the inverse trig    is the angle     whose trig
  interval:        function:       measure in the   function is x.
                                      interval:

  [-1 , 1]         sin-1(x)        [-/2 , /2]     sin  = x
  [-1 , 1]        cos-1(x)            [0, ]        cos  = x
  (-, )         tan-1(x)         [-/2 , /2]     tan  = x
  (-, )         cot-1(x)            [0, ]        cot  = x
(- , -1] or      sec-1(x)         [0, /2) or      sec  = x
   [1, )                            (/2, ]
(- , -1] or       csc-1(x)        [- /2, 0) or    csc  = x
   [1, )                             (0, /2]
Inverse Sine Function
Inverse Cosine Function
Inverse Tangent Function
Inverse Cotangent Function
Inverse Secant Function
Inverse Cosecant Function
           Evaluating Expressions:
1. arccos(-1/2)
   2/3
2. arcsin (0)
   0
3. arccot (-3)
   5/6
4. arccos (-0.8923)
   153.164 or 2.673 radians
5. arctan (-3)
    -71.57 or -1.249 radians
    Inverse Trigonometric Functions Properties:
• If -1  x  1 and -/2  y  /2, then:
     –   sin(arcsin x) = x                and         arcsin(sin y) = y


• If -1  x  1 and 0  y  , then:
     –   cos(arccos x) = x                and         arccos(cos y) = y


• If -  x   and -/2  y  /2, then:
     –   tan(arctan x) = x                and         arctan(tan y) = y

•     Similar properties hold true for the other inverse trigonometric functions
Evaluating Expressions & Solving Equations:
6. tan(arccos(2/2))
    1
7. sec(arctan(-3/5))
    34/5
8. arctan(2x – 3) = /4
    x=2
9. arctan(2x – 5) = -1
    1.721
10. arccos(x) = arcsec(x)
    x = 1
Inverse Trigonometric Functions Derivatives:

         d                u'
            [arcsin u] 
         dx              1 u 2




         d                u'
            [arccos u] 
         dx              1 u 2




         d                u'
            [arctan u] 
         dx              1 u 2
Inverse Trigonometric Functions Derivatives:

         d      1      u'
            [cot u] 
         dx           1 u  2




         d      1      u'
            [sec u] 
         dx           u u2  1


         d      1       u'
            [csc u] 
         dx           u u2  1

				
DOCUMENT INFO
Shared By:
Categories:
Tags:
Stats:
views:14
posted:1/30/2012
language:English
pages:14