Document Sample

The moduli space of partially broken N = 2 supergravities Jan Louis a Universit¨t Hamburg in collaboration with Paul Smyth & Hagen Triendl based on 0911.5077, 1008.1214 Vicente Cort´s, Paul Smyth & Hagen Triendl in preparation e a “Advances in string theory, wall crossing, and quaternion-K¨hler geometry” Paris, September 2010 2 History of spontaneous N = 2 → N = 1 breaking Á ’84: [Cecotti,Girardello,Porrati] showed: “Two into one won’t go” Minkowski vacua of 4d, N = 2 supergravities either have full N = 2 or N = 0 supersymmetry. Á ’95 way out: include magnetic FI-term/magnetic charges [Antoniadis,Partouche,Taylor; Ferrara,Girardello,Porrati] few explicit examples constructed Á recently systematic analysis [Smyth,Triendl,JL] using embedding tensor formalism of [deWit,Samtleben,Trigiante] 3 Outline of the talk 1. brief review of N = 2 supergravity and the embedding tensor formalism 2. formulate the conditions of partial supersymmetry breaking in the embedding tensor formalism 3. discuss solutions 4. derive N = 1 eﬀective action and discuss its moduli space 5. apply to type II string theory 4 N = 2 supergravity Á spectrum gravity multiplet: gµν , ΨµA , A0 , µ A=1,2 vector multiplets: Ai , λiA , ti , µ i=1,...,nv hypermultiplets: ζα , qu , α=1,...,2nh , u=1,...4nh Á scalar ﬁeld space M = MSK (t) × MQK (q) v h 5 a Special K¨hler manifolds MSK (t): special K¨hler manifold v a [de Wit,Van Proeyen] a • K¨hler metric determined by holomorphic prepotential F ¯ t ¯ t Kv = − ln i XI (¯)FI (t) − XI (t)FI (¯) , FI ≡ ∂I F , I,=0,...,nv special coordinates: XI = (1, ti ) • Sp(2nv + 2) electric-magnetic duality rotations act on ˜ symplectic vectors (AI , AµI ) and VΛ = (XI , FI ) , Λ=0,...,2nv µ 6 a Quaternionic K¨hler manifold MQK (q): quaternionic K¨hler manifold h a [Bagger, Witten,...] • triplet of SU (2)-covariantly closed almost complex structures Jx (q) exists ∇Jx = 0 , Jx Jy = −δ xy Id + ǫxyz Jz , x=1,2,3 a associated triplet of K¨hler-forms Kx = dω x + 1 ǫxyz ω y ∧ ω z , 2 ω : SU (2) − connection • Killing vectors kλ determined in terms of triplet of Killing prepotentials Px (moment maps) kλ · Jx = ∇ Px λ 7 Embedding Tensor formalism [de Wit,Samtleben,Trigiante] introduce simultaneously into the action: Á electric gauge ﬁeld: AI , µ I=0,...,nv ˜ Á dual magnetic gauge ﬁeld: AµI ˜ Á embedding tensor: Θλ = (Θλ , ΘIλ ) , Λ=0,...,2nv Λ I ˜ ˜ Dµ q = ∂µ q−AI Θλ kλ (q)−AµI ΘIλ kλ (q) , µ I kλ ≡ Killing vectors Θλ is constrained by: Λ - N = 2 supersymmetry - mutual locality of charges Á two-forms Bµν with only topological couplings, algebraic ﬁeld eqs. and appropriate gauge transformations to keep d.o.f. intact 8 N = 2 supersymmetry variations of the fermions gravitino : δǫ ΨµA = Dµ ǫA − SAB γµ ǫB + . . . , A,B=1,2 gaugino : δǫ λiA = WiAB ǫB + . . . , i=1,...,nv hyperino : δǫ ζα = NA ǫA + . . . , α α=1,...,2nh where SAB ∼ VΛ Θλ Px σAB , Λ λ x x=1,2,3 WiAB ¯ ∼ (∇i VΛ ) Θλ Px σ xAB , Λ λ I=0,...,nv NA α ¯ A ∼ VΛ Θλ Uαu ku , Λ λ A (Uαu is vielbein of quaternionic metric) Recall: kλ · Jx = ∇ Px , λ VΛ = (XI , FI ) 9 Spontaneous N = 2 → N = 1 supersymmetry breaking preserving N = 1 corresponds to δǫ1 λiA = 0, δǫ1 ζα = 0 , δǫ1 ΨµA = 0 δǫ2 λiA = 0, δǫ2 ζα = 0 , δǫ2 ΨµA = 0 which implies (dropped ) WiAB ǫB 1 = 0, NαA ǫA = 0 , 1 SAB ǫB = 1 1 2 µǫ∗ A 1 , WiAB ǫB 2 = 0, NαA ǫA = 0 , 2 SAB ǫB = 2 1 2 µǫ∗ A 2 , where Dµ ǫ1 A = 2 µγµ ǫ∗ A , 1 1 µ ∼ cosmological constant This implies: N = 1 vacua are AdS or Minkowskian and automatically stable 10 Super-Higgs eﬀect Á recall N = 2 spectrum: gravity multiplet s = [2, 3 , 3 , 1] 2 2 vector multiplet s = [1, 1 , 1 , 0, 0] 2 2 hyper multiplet s = [ 2 , 1 , 0, 0, 0, 0] 1 2 Á reorganizes after partial breaking into N = 1 multiplets 3 1 massive gravitino multiplet s = [ 2 , 1, 1, 2 ] 3 massless gravity multiplet s = [2, 2 ] vector multiplets s = [1, 1 ] 2 1 chiral multiplets s = [ 2 , 0, 0] 11 Super-Higgs eﬀect Á recall N = 2 spectrum: gravity multiplet s = [2, 3 , 3 , 1] 2 2 vector multiplet s = [1, 1 , 1 , 0, 0] 2 2 hyper multiplet s = [ 2 , 1 , 0, 0, 0, 0] 1 2 Á reorganizes after partial breaking into N = 1 multiplets 3 1 massive gravitino multiplet s = [ 2 , 1, 1, 2 ] Á minimal ingredients for partial supersymmetry breaking: 1. one vector multiplet 2. one charged hyper ⇒ 2 Goldstone bosons 3. two commuting Killing vectors in hyper-sector 12 gravitino & gaugino variations vanishing gravitino & gaugino variations implies ˜ Θλ − FIJ ΘJλ Px σAB ǫB = 0 , I λ x 1 λ=1,2 ˜ Á “no” N = 1 solution for ΘJλ = 0 [Cecotti,Girardello,Porrati] Á two Killing vectors k1,2 ⇒ choose convenient SU (2)-frame P3 = P3 ≡ 0 , 1 2 and deﬁne P± = P1 ± i P2 1,2 1,2 1,2 Á N = 1 solution in terms of complex vector CI [Smyth,Triendl,JL] Θ1 = − Im(P+ FIJ CJ ) , I ˜ ΘI1 = −Im(P+ CI ) , 2 2 Θ2 = I Im(P+ FIJ CJ ) , ˜ ΘI2 = Im(P+ CI ) , 1 1 ¯ Á locality of charges implies CI (ImF)IJ CJ = 0 Note: no constraint on MSK v 13 hyperino variation Recall: need 2 commuting Killing vectors k1,2 and A ˆ ˆ ¯ NαA ǫA = 0 , 1 NαA ǫA = 0 , 2 NA ∼ Uαu ku , α k u ≡ V Λ Θλ k u Λ λ this implies ˆ ˆ k · J3 = i k , ˆ k · (J1 − iJ2 ) = 0 ˆ ⇒ MQK is constrained by existence of holomorphic k h 14 hyperino variation Recall: need 2 commuting Killing vectors k1,2 and A ˆ ˆ ¯ NαA ǫA = 0 , 1 NαA ǫA = 0 , 2 NA ∼ Uαu ku , α k u ≡ V Λ Θλ k u Λ λ this implies ˆ ˆ k · J3 = i k , ˆ k · (J1 − iJ2 ) = 0 ˆ ⇒ MQK is constrained by existence of holomorphic k h N = 1 moduli space solution of: δΘλ = 0 , Λ ˆ ˆ δ k · J3 − i k = 0 generically stabilizes large number of moduli! 15 Outline for the rest of the talk 1. assume MQK with holomorphic Killing vector exists h and derive N = 1 eﬀective action 2. construct explicit solution for type II string theory 16 N = 1 eﬀective action steps: Á integrate out massive gravitino multiplet ( 2 , 1, 1, 1 ) 3 2 together with all multiplets at the same scale Á compute LN=1 (K, W, f ) in terms of “N = 2 data” eﬀ Á N = 1 constraints: a a • scalar ﬁeld space is K¨hler (with K¨hler potentials K) • W, f are holomorphic (None of these constraints hold in N = 2.) 17 N = 1 scalar ﬁeld space Recall N = 2 scalar ﬁeld space M = MSK (t) × MQK (q) v h integrating out massive multiplets takes: Á subspace MSK ⊂ MSK N=1 v a – automatically K¨hler Á quotient MQK ⊂ MQK /(k1 , k2 ) N=1 h e [Cort´s,Smyth,Triendl,JL] ˆ ˆ with K¨hler metric huv and K¨hlerform K a a ˆ huv = huv − k1u k1v + k2u k2v /k2 , 1 ˆ K = dω 3 (Note: MQK can be as large as 4nh − 2) N=1 Á resulting N = 1 scalar ﬁeld space is indeed K¨hler a MN=1 = MQK × MSK N=1 N=1 18 N = 1 holomorphic couplings 1 Á superpotential: W= e 2 K VΛ Θλ P− , ¯ ∂W = 0 Λ λ Á gauge kinetic function: fIJ = FIJ |N=1 , ¯ ∂f = 0 19 N = 1 solutions in type II string theory Á consider type II compactiﬁed on 6-dim. manifolds with SU (3) × SU (3)-structure [Grana,Waldram,JL,...] Á d = 4 low energy eﬀective action is an N = 2 supergravity Á MQK is in the image of c-map h [Cecotti,Girardello,Ferrara,Sabharwal] This implies: a • (2nh − 2)-dim. special K¨hler subspace with RR-scalars ﬁbered over it • (2nh − 1) isometries associated with RR-scalars exist Á explicit N = 1 solution can be constructed 20 N = 1 solutions in type II string theory Á N = 1 solution in terms of “doubly symplectic” charge matrix eAI pI A Θ= , A=0,...,nh −1, I=0,...,nv mA I q AI with ¯ ¯ eAI = Re(FIJ C J GAB DB ) , ¯ pI = (C J GAB DB ) , A I ¯ ¯ mA = Re(FIJ C J DA ) , ¯ qAI = Re(C I DA ) where ¯ DA Im(GAB )DB = 0, a (G is prepotential of special K¨hler base) Á Remarks: • solution is mirror symmetric • solution only exists for non-geometric ﬂuxes/torsion • analogous solution for AdS background 21 N = 1 solutions in type II string theory Á N = 1 solution in terms of “doubly symplectic” charge matrix eAI pI A Θ= , A=0,...,nh −1, I=0,...,nv mA I q AI with ¯ ¯ eAI = Re(FIJ C J GAB DB ) , ¯ pI = (C J GAB DB ) , A I ¯ ¯ mA = Re(FIJ C J DA ) , ¯ qAI = Re(C I DA ) where ¯ DA Im(GAB )DB = 0, a (G is prepotential of special K¨hler base) Á N = 1 K¨hler potential: a K = KSK + 2φ can be expressed in terms of holomorphic coordinates given in [Rocek,Vafa,Vandoren] 22 Conclusion Á N = 2 → N = 1 generically possible if magnetic charges present – both in Minkowski and AdS backgrounds Á no constraint on MSK v Á MQK is constraint by existence of holomorphic k h Á N = 1 eﬀective action can be constructed a with K¨hlerian scalar ﬁeld space and holomorphic W, f Á for type II compactiﬁed on manifolds with SU (3) × SU (3)-structure N = 1 solutions exist if non-geometric ﬂuxes/torsion are present

DOCUMENT INFO

Shared By:

Categories:

Tags:

Stats:

views: | 10 |

posted: | 1/25/2012 |

language: | English |

pages: | 22 |

OTHER DOCS BY huanghengdong

Docstoc is the premier online destination to start and grow small businesses. It hosts the best quality and widest selection of professional documents (over 20 million) and resources including expert videos, articles and productivity tools to make every small business better.

Search or Browse for any specific document or resource you need for your business. Or explore our curated resources for Starting a Business, Growing a Business or for Professional Development.

Feel free to Contact Us with any questions you might have.