FUNGSI KOMPOSISI DAN FUNGSI INVERS

Document Sample
FUNGSI KOMPOSISI DAN FUNGSI INVERS Powered By Docstoc
					FUNGSI KOMPOSISI DAN FUNGSI INVERS

A. Fungsi dan Jenis-jenisnya

1. Pengertian Fungsi
Fungsi atau pemetaan adalah suatu relasidari himpunan A ke Himpunan B dalam hal ini setiap x


Suatu fungsi biasanya dinyatakan dengan huruf kecil, seperti f, g dan h. Suatu fungsi f dari A ke B
     ditulis dengan f:A B.
Mis.
A B Ket.
a. domainnya adalah {a, b, c, d }
b. kodomainnya adalah { 1,2,3, 4}
c. range adalah { 2, 3 }




2. Sifat-Sifat Fungsi
a. Fungsi Surjektif
Suatu fungsi dengan daerah hasil sama dengan daerah kodomainnya disebut fungsi surjektif
     atau fungsi onto
Fungsi f:A
     himpunan B atau Rf¬¬¬ = B

AB
b. Fungsi Injektif
Sebuah fungsi dengan setiap anggota domain yang berbeda mempunyai peta yang berbeda
    disebut fungsi injektif.(Fungsi satu-satu).
Fungsi f : A
    maka berlaku f(a1) ≠ f(a2).
AB
c. Fungsi Bijektif
Misalkan fungsi f : A
    berurutan f = {(3, a), (4, b), (5, c)}. Disebut fungsi sutrjektif karena range fungsi f sama
    dengna kodomain fungsi f atau Rf ¬¬ = B.

AB
Fungsi f : A            fungsi bijektif jika dan hanya jika fungsi f sekaligus fungsi surjektif dan
   injektif.

B. Operasi Aljabar pada Fungsi

Misalkan ditentukan fungsi f(x) dan g(x) maka dapat dituliskan operasi aljabar untuk fungsi-
     fungsi tersebut sebagai berikut,
1. ¬(f + g) (x) = f(x) + g(x)
2. (f – g ) (x) = f(x) – g(x)
3. (f x g) (x) = f(x) x g(x)
4. (x) =
Contoh.
Diketahui f(x) = x¬¬¬2 + 3x – 1 dan (f + g)(x) = x2 + 5. tentukan g(x)
Jawab.
(f+g)(x) = f(x) + g(x)
x2 + 5 = (x2 + 3x – 1 ) + g(x)
g(x) = (x2 + 5) – (x2 + 3x – 1)
g(x) = x2 + 5 – x2 – 3x + 1
g(x) = -3x + 6

C. Fungsi Komposisi

1. Pengertian Fungsi Komposisi
Misalkan fungsi f dirumuskan dengan f(x) = x+ 1 dan g dirumuskan dengan g(x) = x2.
Dengan menggunakan rumus f(x) = x + 1, untuk
x=1
x = 2 f(2) = 2 + 1
x=t
diganti dengan g(x), diperoleh
f(g(x)) = g(x) + 1
= x2 + 1
Misalkan fungsi h(x) = f(g(x)) = x2 + 1.
Fungsi h(x) yang diperoleh dengan cara di atas, dinamakan fungsi komposisi g dan f. fungsi ini
     ditulis dengan f o g, dibaca “ f bundaran g”.
Dengan cara yang serupa, diperoleh
g(f(x) = g( x + 1 )2
= (x + 1)2
Fungsi g(f(x)) selanjutnya ditulis sebagai (g o f)(x)

Misalkan fungsi f : A
    dan g, ditulis g o f (dibaca : g bundara f ) adalah suatu fungsi yang ditentukan dengan aturan
(g o f)(a) = g(f(a))
Pengerjaannya dilakukan pada fungsi f terlebih dahulu, kemudian dilanjutkan fungsi g. hal ini
    dapat dituliskan (g o f)(a) = g(f(a)).

Contoh :
Diketahui f(x) = 3x + 5 dan g(x) = 2x – 7. Tentukan
a. (f o g )(3)
b. (g o f )(-2)
Jawab :
1) Ada dua cara untuk menentukan nilai dari suatu fungsi komposisi.
a. Cara pertama
Dengan menentukan fungsi komposisinya terlebih dahulu
(f o g )(x) = f(g(x))
= f(2x – 7)
= 3(2x – 7) + 5
= 6x – 21 + 5
= 6x – 16
Untuk memperoleh nilai (f o g )(3), subtitusikan nilai x = 3 ke (f o g )(x), yaitu (f o g )(3) = 6(3) – 16
    =2
Jadi (f o g )(3) = 2

b. Cara kedua
Kita ketahui bahwa (f o g )(3) = 2
Untuk itu, terlebih dahulu kita cari g(3), yaitu g(3) = 2(3) – 7 = -1
Jadi, (f o g )(3) =f(g(3))
= f(-1)
= 3(-1) + 5
=2

2) Ada dua cara juga untuk menentukan nilainya
a) Cara pertama
(g o f)(x) = g9f(x))
= g(3x + 5)
= 2(3x + 5) – 7
= 6x + 10 – 7
= 6x + 3
Dengan demikian, (g o f)(-2) = 6(-2) + 3= -9
b) Cara kedua
(g o f)(x) = g9f(-2))
= g(3(-2) + 5)
= g(-1)
= 2(-1) – 7
=-9
Jadi, (g o f)(-2) = - 9

2. Sifat-Sifat Komposisi Fungsi
a. Komposisi fungsi tidak bersifat komutatif, yaitu
(f o g )(x) ≠ (g o f )(x)
Bukti :
Misalkan diketahui fungsi-fungsi
f(x) = 5x – 4
g(x) = 2x + 8
h(x) = x2
Komposisi fungsi f o g dan g o f dapat ditentukan di bawah ini .
a) (f o g )(x) = f(g(x))
= f(2x + 8)
= 5(2x + 8) – 4
= 10x + 36
b) (g o f )(x) = g(f(x))
= g(5x – 4)
= 2(5x – 4) + 8
= 10x – 8 + 8
=10x
Sehingga terbukti (f o g )(x) ≠ (g o f )(x)
b. Komposisi fungsi bersifat asosiatif, yaitu.

((g o h ) o f)(x) = (g o (h o f))(x)
Bukti :
f(x) = 2x + 1
g(x) = x2 – 6x + 7
h(x) = x - 2
Komposisi fungsi ((g o h ) o f)(x) dan (g o (h o f))(x) dapat ditentukan di bawah ini .
a) ((g o h ) o f)(x) = (( g (x – 2) o f)
= (((x-2)2 – 6(x-2) + 7) o f)
= ((x2-4x+4-6x+12+7) o f)
= (x2-10x+23) o f)
= (f(x))2-10 f(x)+23
= (2x+1)2 – 10(2x+1) + 23
= 4x2+4x+1-20x-10+23
= 4x2-16x+14
b) ((g o (h o f))(x) = (g o (h o f)(x)
= (g o (h(2x+1))
= (g o ((2x+1)-2)
= (g o (2x-1))
= (2x-1)2-6(2x-1)+7
= 4x2 -4x+1-12x+6+7
= 4x2-16x+14
Jadi ((g o h ) o f)(x) = (g o (h o f))(x)


c. Terdapat fungsi identitas I(x) = x sehingga (f o I)(x) = (I o f)(x) = f(x)
Bukti :
Misalkan f(x) = x2 -3x +2 dan I(x) = x
a) (f o I)(x) = f(I(x))
= f(x)
= x2 -3x +2
b) (I o f)(x) = I(f(x)
= I(x2 -3x +2)
= x2 -3x +2
Soal :
1) Diketahui fungsi f: R                                  – 9 dan (g o f))(x)= 4x2 + 12x. tentukan f(x).
Jawab :
Diketahui (g o f)(x)= 4x2 + 12x
(f(x))2 – 9 = 4x2 + 12x
(f(x))2 = 4x2 + 12x + 9
(f(x))2 = (2x + 3)2
F(x) = 2x + 3
Jadi f(x) = 2x + 3
2) Diketahui fungsi f: R
Jawab:
(f o gf))(x)= 5x + 7
f(g(x)) = 5x + 7
f(x + 2) = 5x + 7
Ada dua cara untuk menyelesaikan persamaan di atas
a) Cara satu :
f(x + 2) = 5x + 7
Pada ruas kanan harus terbentuk factor (x + 2) sehingga
f(x + 2) = 5x + 7
= 5(x + 2) – 10 + 7
= 5(x + 2) – 3
Karena f(x + 2) = 5(x +2) – 3 maka f(x) = 5x – 3.
Jadi, f(x) 5x – 3

b) Cara dua :
Perhatikan f(x +2) = 5x + 7.
Dari persamaan ini, variable ruas kanan adalah (x + 2), sedangkan variable ruas kanan adalah x.
    dengan demikian, (x + 2) bersesuaian dengan x.
x+2=x
x=x–2
Jadi, (x + 2) di ruas kiri diubah menjadi x, sedangkan variable x di ruas kanan diubah menjadi x –

2. dengan demikian diperoleh :
f(x) = 5(x – 2) + 7
= 5x – 10 + 7
= 5x – 3
Jadi, f(x) = 5x – 3.

D. Fungsi Invers ( Notasinya f -1 )
f

AB

f

f -1
f -1(y) = x f(x) = x


Jika fungsi f : A                                                                  y) | x
     maka invers dari fungsi f adalah f -
f -1 = { (x, y) | x
suatu fungsi f: A                                         -             an hanya jika f merupakan
     fungsi bijektif (korespondensi satu-satu).
Contoh :
Diketahui fungsi invers f : A
     pasangan beruurtan R= {(1, 2 ), (3, 6), (5, 8)}. Tentukan invers fungsi f dan selidikilah apakah
     invers fungsi f merupakan sebuah fungsi.
Jawab :
Invers fungsi f adalah f -1 : B         -1 = { (2,1), (6, 3), (8, 5)}. Dan tampak bahwa f -1
     merupakan sebuah relasi yang merupakan fungsi.
1. Menentukan Invers Suatu Fungsi
Syaratnya fungsi tersebut bijektif
Langkah-langkahnya :
a) mengubah bentuk y = f(x) menjadi bentuk x = f(x), karena x = f -1(y) maka kita akan
     memperoleh bentuk f -1 (y) = f(y)
b) setelah memperoleh bentuk f -1 (y) = f(y), ganti variable y dengan variable x sehingga akan
     memperoleh f -1 (x) yagn sudah dalam variable.
Contoh :
Tentukan rumus invers dari fungsi-fungsi berikut ini .
a) f(x) = 5x + 2
b) f(x) =
Jawab :
a) y = f(x)
y = 5x +2
5x = y – 2
x=
f -1 =
Sehingga f -1 (x) =

b) f(x) =
y = f(x)
y=
xy + 3y = 3 – 4x
4x + xy = 3 – 3y
(4 + y) x = 3 – 3y
x=
f -1(y) =
f -1(x) =

2. Hubungan Invers dengan Komposisi Fungsi
Untuk mengetahui hubungan invers dengan komposisi fungsi, kita perhatikan uraian berikut :
a. f(x) = x + 5
Dapat kita tentukan invers dari fungsi f, yaitu ;
y = f(x)
y=x+5
x=y–5
f -1 (y) = y – 5
jadi, f -1 (x) = x – 5
1) (f o f -1 )(x) = f(f 1 (x)) = f(x-5) = (x-5) + 5 = x
2) (f -1 o f )(x) = f-1(f(x)) = f(x+5) = (x+5) – 5 = x
Dengan demikian, diperoleh :
(f o f -1 )(x) = (f -1 o f )(x) =x

b. f(x) = x2 + 6
y = f(x)
y = x2 + 6
x2 = y – 6
x=
f -1 =
f -1 (x) =
Untuk domain f adalah x                       -
Untuk domain f adalah x < 0 maka f -1 (x) = - , untuk x
1) (f o f -1 )(x) = f(f -1)(x)) = f( ) = ( )2 + 6 = (x – 6) + 6
2) (f -1 o f )(x) = f -1(f )(x)) = f -1(x2 +6) = ( ) = = x

Dengan demikian diperoleh,
(f o f -1 )(x) = (f -1 o f )(x) = x
Dari uraianb di atas, dapat dilihat bahwa komposisi fungsi dengan inversnya akan menghasilkan
     fungsi identities sehingga secara umum dituliskan sebagai berikut :
(f o f -1 )(x) = (f -1 o f )(x) = x = I(x)



3. Domain, Kodomain serta Grafik Fungsi dan Inversnya
Untuk menentukan domain, kodomain dan grafik fungsi inversnya, kita lihat contoh berikut.
Diketahui fungsi f(x) = 2x + 6. tentukan
a. Carilah f -1
b. Tentukan domain dan kodomain fungsi f agar f(x) mempunyai fungsi invers
Jawab.
a. f(x) = 2x + 6
misalkan y = f(x). dengan demikian,
y = 2x +6
2x = y – 6
x=½y–3
f -1 (y) = ½ y – 3, jadi f -1 (x) = ½ x – 3
y
b. Domain untuk f adalah semua himpunan bilangan real atau Df = {x | x
     dari f -1 (x) merupakan kodomain fungsi f maka kodomain f agar mempunyai fungsi invers
     adalah himpunan bilangan real. Digambarkan dalam bidang Cartesius :

y
6

f(x) = 2x + 6 y = x


-3 0 6 x

-3 f -1(x) = ½ x – 3


E. Invers Fungsi Komposisi
Misalkan f dan g merupakan fungsi maka komposisi fungsi-fungsi itu adalah (f o g)(x) = f(g(x))
     dan (g o f)(x) = g(f(x)).
Invers dari komposisi didefinisikan sebagai berikut.
Jika u dan v merupakan komposisi dari fungsi f dan g, yaitu u = f o g dan v = g o f, invers dari
     fungsi u dan v merupakan komposisi dari invers f dan g yang ditulis
u -1 = (f o g) -1 = g -1 o f -1
v -1 = (g o f) -1 = f -1 o g -1
Lihat diagram panah berikut,

fog

gf

g -1 f -1

g -1 o f -1

f -1 o g -1


Dari diagram di atas tampak bahwa invers dari fungsi komposisi f o g, yaitu
(f o g) -1 diperoleh dengan memetakan c ke b oleh f -1 , kemudian dilanjutkan dengan
     memetakan b ke a oleh g -1 . dengan demikian, dapat dituliskan sebagai berikut.
(f o g) -1 (x) = (g -1 o f -1)(x)
Dengan cara yang sama, dapat kita peroleh invers fungsi komposisi g o f, yaitu,
(g o f) -1 (x) =( f -1 o g -1)(x)

Contoh :
Diberikan fungsi f dan g, yaitu f(x) = 5x +8 dan g(x) = x – 5.
a. tentukan (f o g) -1(x)
b. tentukan (g o f) -1(x)
c. apakah (f o g) -1(0) = (g o f) -1(0)
Jawab :
Ada dua cara untuk menentukan invers fungsi komposisi ini.
a. Cara 1 :
(f o g)(x) = f(g(x))
= f(x – 5)
=5(x – 5) + 8
= 5x – 17
(f o g) -1(x) dapat ditentukan sebagai berikut.
Misalkan (f o g)(x) = y
y = (f o g)(x)
y = 5x – 17
x=
(f o g) -1(y) =

(f o g) -1(x) =
Jadi, fungsi invers dari (f o g)(x) adalah (f o g) -1(x) =
Cara 2 :
Kita tentukan dulu f -1 (x) dan g -1 (x).
Misalkan y = f(x)
y = f(x)
y = 5x + 8
5x = y – 8
x=
f -1 (y) =
f -1 (x) =

misalkan y = g(x)
y = g(x)
y=x–5
x=y+5
g -1 (y) = y + 5
g -1 (x) = x + 5



dengan demikian, kita dapat menentukan invers dari f o g sebagaiberikut.
(f o g) -1(x) = (g -1 o f -1) (x)
= g -1 o( f -1(x))
= g -1 ( )
=+5
=
Jadi, fungsi invers dari (f o g) -1(x) =

b. Cara 1 :
(g o f)(x) = g(f(x))
= g(5x + 8) – 5
= 5x + 3
(g o f) -1(x) dapat kita peroleh dengan memisalkan y = (g o f)(x)
y = (g o f)(x)
y = 5x +3
x=
(g o f) -1(y) =
(g o f) -1(x) =
jadi, fungsi invers dari (g o f)(x) adalah (g o f) -1(x) =

Cara 2 :
Dari jawaban a, diperoleh f -1 (x) = dan g -1 (x) = x + 5. dengan demikian diperoleh :
(g o f) -1 = (f -1 o g -1)(x)
= f -1( g -1 (x))
= f -1( x + 5)
=
=
Jadi, fungsi invers dari (g o f)(x) adalah (g o f) -1 =
c. Dari jawaban b, diperoleh
(g o f) -1(0) =
=
(f o g) -1(0) =
=
Jadi, (g o f) -1(0 ) ≠ (f o g) -1(0)

				
DOCUMENT INFO
Shared By:
Stats:
views:1984
posted:1/5/2012
language:
pages:10