Docstoc

Basic Probabilities

Document Sample
Basic Probabilities Powered By Docstoc
					                                                                                                        DMAIC Form
                                                                                                                                                                         Tracking Number
Six Sigma - Progress Report
Project name                                                            Project code                             Principal (Project Owner/BB/GB)                                     Blackbelt     Employee No.
                                                                                                                                                                                     Greenbelt

Estimated Savings (Annualized)                                          Start Date                               Dept/Group/BU                                           Champion



Estimated Improvements (Annualized)                                     Date Completed                           Business Unit Description                               Dept/Grp/BU Manager



Project Description                                                                                                                          Team Members



   25%      50%     Define/Measure              75%   100%      25%    50%      Analyze          75%      100%      25%     50%      Improve              75%     100%        25%     50%       Control           75%   100%

Date Started:                                                Date Started:                                       Date Started:                                           Date Started:
Date Completed:                                              Date Completed:                                     Date Completed:                                         Date Completed:
                       Tools Utilized                                          Tools Utilized                                       Tools Utilized                                           Tools Utilized
                Process Flow/Mapping                                    FMEA                                                  Full Factorial DOE                                     X-bar and R-Chart
                Critical Performance Measures                           Confidence Intervals                                  Fractional Factorial DOE                               X-bar and S-Chart
                Cause & Effect with CNX/SOPs                            Sample Size Determination                             L12 Design                                             IMR Chart
                Pareto of Defects                                       Hypothesis Tests - t test, F test                     L18 Design                                             P Chart
                                                                          Rules of Thumb for shifts in avg,
                Measure/Track Y's: Run Charts                                                                                 Box-Behnken Design                                     c Chart
                                                                                      std dev
                Histogram of Y's and X's                                Control Charts                                        Central Composite Design                               FMEA Revisited
                Correlation Studies                                     Measurement System Analysis                           Robust Design                                          Reliability
                Gage R&R                                                Cpk, Cp, Ppk, Pp                                      Mixture Design                                         Cusum
                Baseline Process                                        Pareto Analysis                                       Multiple Response Surfaces                             Spec Setting Analysis on X's
                Project Charter                                         Regression Analysis (Historical Data)                 Main Effects Plots
                SIPOC                                                   Screening DOEs                                        Interaction Plots
                SIPOC Relationship Matrix                               Chi-squared
                       Deliverables                                            Deliverables                                          Deliverables                                              Deliverables
                Detailed Charter                                        Measurement System Analysis                           12 Step report to include:                             Control Plan
                Process Map                                             Identify/Quantify KPIVs that:                             model's relating Y's to X's                        Cost Savings/Avoidance
                Performance Measures (Y's)                                   affect average of KPOVs                              optimal settings for X's                            show finance involvement

                Customer Specs on Y's                                        affect s of KPOVs                                    variability in Y's at optimal
                Sources of Variation (X's)                              Hypothesis Test Results
                PF/CE/CNX/SOP                                           Process Performance Scorecard                         Process Performance Scorecard                          Process Performance Scorecard
                Process Performance Scorecard                             (compare to Measure results)                          (compare to Analyze results)                           (compare to Analyze results)

                COPQ (involve finance)
                dpu, dpmo,s-level, yield
                Goals                                                   Goals                                                 Goals                                                  Goals


                                                                                                          Page 1
Used to create a Gantt Chart for up to 30 elements                                                      Learn About Gantt C
Step 1: Enter values (task, start date, #days) for each column in the table for up to 30 elements.


                                      # Days                 1/0/1900               1/0/1900         1/0/1900
 Task #       Task      Start Date
                                     Required
     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
Learn About Gantt Charts



                 1/0/1900   1/0/1900   1/1/1900   1/1/1900
This can be used to calculate basic statistics for up to 50 samples.

Step 1: Enter sample values into column B for the first group of data.
Step 2: Enter sample values into column C for the second group of data.
Step 3: See results

             Subgroup1 Subgroup 2
         1                                     1            2                               Subgroup 1
         2                                     1            2   Count                                   0
         3                                     1            2   Mean                           #DIV/0!
         4                                     1            2   Median                         #NUM!
         5                                     1            2   Mode                            #N/A
         6                                     1            2   Max                                  0.00
         7                                     1            2   Min                                  0.00
         8                                     1            2   Range                                0.00
         9                                     1            2   Std Dev (Pop)                  #DIV/0!
        10                                     1            2   Std Dev (Sample)               #DIV/0!
        11                                     1            2   Variance (Pop)                 #DIV/0!
        12                                     1            2   Variance (Sample)              #DIV/0!
        13                                     1            2   Skewness                       #DIV/0!
        14                                     1            2   Kurtosis                       #DIV/0!
        15                                     1            2
        16                                     1            2
                                                                                                      Dot plot
        17                                     1            2
        18                                     1            2
        19                                     1            2
        20                                     1            2
        21                                     1            2
        22                                     1            2
        23                                     1            2
        24                                     1            2
        25                                     1            2
        26                                     1            2
        27                                     1            2
        28                                     1      0.000 2          0.200        0.400         0.600
        29                                     1            2
        30                                     1            2
        31                                     1            2
        32                                     1            2
        33                                     1            2
        34                                     1            2
        35                                     1            2
        36                                     1            2
        37                                     1            2
        38                                     1            2
        39                                     1            2
        40                                     1            2
        41                                     1            2
        42                                     1            2
        43                                     1            2
        44                                     1            2
        45                                     1            2
46   1   2
47   1   2
48   1   2
49   1   2
50   1   2
    Subgroup 2        t-tes       F-test
              0         #DIV/0!    #DIV/0!
      #DIV/0!
      #NUM!
       #N/A
           0.00
           0.00
           0.00
      #DIV/0!
      #DIV/0!
      #DIV/0!
      #DIV/0!
      #DIV/0!
      #DIV/0!


Dot plot




                                             Series1
                                             Series2




           0.800   1.000          1.200
This can be used to calculate a Box and Whisker Plot for up to 5 group with 50 samples each.

Step 1: Enter the sample value names into the title boxes. (ie Subgroup1)
Step 2: Enter sample values into the yellow cells.
Step 3: See results

                                 Subgroup1 Subgroup 2 Subgroup 3 Subgroup 4 Subgroup 5
                             1
                             2
                             3
                             4
                             5
                             6
                             7
                             8
                             9
                            10
                            11
                            12
                            13
                            14
                            15
                            16
                            17
                            18
                            19
                            20
                            21
                            22
                            23
                            24
                            25
                            26
                            27
                            28
                            29
                            30
                            31
                            32
                            33
                            34
                            35
                            36
                            37
                            38
                            39
                            40
                            41
                            42
                            43
                            44
                            45
                            46
                            47
                            48
            49
            50

              n         0         0         0         0         0
          Min        0.00      0.00      0.00      0.00      0.00
25th percentile   #NUM!     #NUM!     #NUM!     #NUM!     #NUM!
       Median     #NUM!     #NUM!     #NUM!     #NUM!     #NUM!
75th percentile   #NUM!     #NUM!     #NUM!     #NUM!     #NUM!
          Max        0.00      0.00      0.00      0.00      0.00


                     0.00      0.00      0.00      0.00      0.00
                     0.00      0.00      0.00      0.00      0.00
                     0.00      0.00      0.00      0.00      0.00
                  #NUM!     #NUM!     #NUM!     #NUM!     #NUM!
                  #NUM!     #NUM!     #NUM!     #NUM!     #NUM!
                  #NUM!     #NUM!     #NUM!     #NUM!     #NUM!
                  #NUM!     #NUM!     #NUM!     #NUM!     #NUM!
                  #NUM!     #NUM!     #NUM!     #NUM!     #NUM!
                  #NUM!     #NUM!     #NUM!     #NUM!     #NUM!
                  #NUM!     #NUM!     #NUM!     #NUM!     #NUM!
                  #NUM!     #NUM!     #NUM!     #NUM!     #NUM!
                  #NUM!     #NUM!     #NUM!     #NUM!     #NUM!
                  #NUM!     #NUM!     #NUM!     #NUM!     #NUM!
                     0.00      0.00      0.00      0.00      0.00
                     0.00      0.00      0.00      0.00      0.00
                     0.00      0.00      0.00      0.00      0.00

      Minimum           3        11        19        27        35
      Minimum           5        13        21        29        37
      Minimum           4        12        20        28        36
25th Percentile         4        12        20        28        36
25th Percentile         7        15        23        31        39
25th Percentile         1         9        17        25        33
75th Percentile         1         9        17        25        33
75th Percentile         7        15        23        31        39
25th Percentile         7        15        23        31        39
       Median           7        15        23        31        39
       Median           1         9        17        25        33
75th Percentile         1         9        17        25        33
75th Percentile         4        12        20        28        36
     Maximum            4        12        20        28        36
     Maximum            5        13        21        29        37
     Maximum            3        11        19        27        35
1.00
0.90
0.80
0.70
                                    Subgroup1
0.60
                                    Subgroup 2
0.50
                                    Subgroup 3
0.40
                                    Subgroup 4
0.30
                                    Subgroup 5
0.20
0.10
0.00
       0   10   20   30   40   50
This can be used to calculate basic probabilities.

Step 1: Enter values into the yellow cells.
Step 2: See results


Permutations

        n=               is the total number of objects
        r=               is the number of objects chosen

  Result =           1



Combinations

        n=               is the total number of objects
        r=               is the number of objects chosen

  Result =           1


Binomial for pdf                                                     Binomial for cdf

        n=               is the total number of independent trials          n=            is the total number of ind
        r=               is the number of successes in trials               r=            is the number of succes
     P(s)=               is the probability of success                   P(s)=            is the probability of succ

  Result =           1 P(r successes in n trials)                      Result =         1 P(r successes in n trials


Hypergeometric

       N=                lot size
       m=                number of successes in the lot
       n=                sample size
       x=                number of successes in the sample

  Result =           1


Poisson for pdf                                                      Poisson for cdf

      x=                 is the number of events                           x=             is the number of events
   mean=                 is the expected value                          mean=             is the expected value

  Result =           1 P(r successes in n trials)                      Result =         1 P(r successes in n trials
is the total number of independent trials
is the number of successes in trials
is the probability of success

P(r successes in n trials)




is the number of events
is the expected value

P(r successes in n trials)
Used to create a scatter plot chart with a linear regression line for up to 30 samples                 Learn About Sc
Step 1: Enter sample values into column B for the X variable.
Step 2: Enter sample values into column C for the Y variable.
Step 3: To solve for a specific X value, enter the X value into cell C43.
Step 4: See chart and cell C44 for results.



              Step 1   Step 2
              X        Y
          1
          2
                                             1.2
          3
          4
          5
                                              1
          6
          7
          8
                                             0.8
          9
         10
         11                                  0.6
         12
         13
         14                                  0.4
         15
         16
         17                                  0.2
         18
         19
         20                                   0
         21                                    0.00         0.20         0.40            0.60   0.80
         22
         23
         24
         25
         26
         27
         28
         29
         30


Step 3        x=
Step 4        y=         #DIV/0!
  Learn About Scatter Diagrams




                                          Sample     X       Y   x^2   xy
                                             1
                                             2
                                             3
                                             4
                                             5
                                             6
                                             7
                                             8
                                             9
                                            10
                       Series1              11
                       Linear (Series1)     12
                                            13
                                            14
                                            15
                                            16
                                            17
                                            18
                                            19
                                            20
1.00      1.20                              21
                                            22
                                            23
                                            24
                                            25
                                            26
                                            27
                                            28
                                            29
                                            30
                                           Sum       0       0   0      0

                                           n=        0
                                          ybar=    #DIV/0!
                                          xbar=    #DIV/0!
                                          Sx^2=    #DIV/0!
                                          Sxy=     #DIV/0!              r=
                                           Sx=     #DIV/0!             r^2=
                                           Sy=     #DIV/0!
                                                                       m=
                                                                       B=
 y^2      x-xbar y-ybar (x-xbar)(y-ybar) (x-xbar)^2 (y-ybar)^2




  0         0      0           0             0          0




#DIV/0!
#DIV/0!

#DIV/0!
#DIV/0!
Used to perform calculations based on the normal distribution.
Step 1: Enter required data into the yellow boxes.
Step 2: See graphs and results in E5 through E9.

Mean                                            P(X <= X1)               #VALUE!
Standard Deviation                              P(X >= X1)               #VALUE!
X1 (lower limit)                                P(X <= X2)               #VALUE!
X2 (upper limit)                                P(X >= X2)               #VALUE!
Z lower=                                        P(X1 <= X <= X2)         #VALUE!
Z upper=



Low:                      -3.5
High:                      3.5
Increment:                0.05

         z               cdf         pdf
               -3.5   0.000233              0
              -3.45    0.00028   4.76642E-05
                                                                                          Normal Distribution
               -3.4   0.000337    5.6636E-05
              -3.35   0.000404   6.71285E-05                                                      0.025
               -3.3   0.000483   7.93663E-05
              -3.25   0.000577   9.36009E-05
               -3.2   0.000687   0.000110113                                                       0.02
                                                     Probability




              -3.15   0.000816   0.000129214
               -3.1   0.000968   0.000151251                                                      0.015
              -3.05   0.001144   0.000176604
                 -3    0.00135   0.000205691                                                       0.01
              -2.95   0.001589   0.000238972
               -2.9   0.001866   0.000276944                                                      0.005
              -2.85   0.002186   0.000320148
               -2.8   0.002555   0.000369169
              -2.75    0.00298   0.000424633
                                                                                                     0
               -2.7   0.003467   0.000487211                        -4     -3        -2      -1           0
              -2.65   0.004025   0.000557615                                                              Z
               -2.6   0.004661   0.000636599
              -2.55   0.005386   0.000724958
               -2.5    0.00621   0.000823519
              -2.45   0.007143   0.000933145
               -2.4   0.008198   0.001054725                                       Cumulative Distribution Fu
              -2.35   0.009387    0.00118917
               -2.3   0.010724   0.001337404
              -2.25   0.012224   0.001500363                                                        1.2
               -2.2   0.013903   0.001678975
              -2.15   0.015778    0.00187416                                                          1
               -2.1   0.017864   0.002086813
                                                                                                    0.8
                                                      Probability




              -2.05   0.020182   0.002317795
                 -2    0.02275   0.002567917
              -1.95   0.025588   0.002837928                                                        0.6
               -1.9   0.028717      0.0031285
              -1.85   0.032157   0.003440215                                                        0.4
                                            Probability
         -1.8    0.03593     0.003773544
        -1.75   0.040059     0.004128838                                      0.2
         -1.7   0.044565     0.004506306
        -1.65   0.049471     0.004906005                                       0
         -1.6   0.054799     0.005327824                  -4   -3   -2   -1         0
        -1.55   0.060571     0.005771466
                                                                                    Z
         -1.5   0.066807     0.006236443
        -1.45   0.073529     0.006722058
         -1.4   0.080757        0.0072274
        -1.35   0.088508     0.007751332
         -1.3      0.0968    0.008292493
        -1.25    0.10565     0.008849289
         -1.2    0.11507     0.009419897
        -1.15   0.125072     0.010002265
         -1.1   0.135666     0.010594125
        -1.05   0.146859     0.011192995
           -1   0.158655     0.011796198
        -0.95   0.171056     0.012400872
         -0.9    0.18406     0.013003999
        -0.85   0.197663     0.013602418
         -0.8   0.211855     0.014192855
        -0.75   0.226627     0.014771954
         -0.7   0.241964        0.0153363
        -0.65   0.257846     0.015882459
         -0.6   0.274253     0.016407007
        -0.55    0.29116     0.016906569
         -0.5   0.308538     0.017377852
        -0.45   0.326355     0.017817682
         -0.4   0.344578     0.018223038
        -0.35   0.363169      0.01859109
         -0.3   0.382089     0.018919229
        -0.25   0.401294     0.019205097
         -0.2    0.42074     0.019446616
        -0.15   0.440382     0.019642017
         -0.1   0.460172     0.019789855
        -0.05   0.480061     0.019889031
-4.06619E-15           0.5   0.019938806
         0.05   0.519939     0.019938806
          0.1   0.539828     0.019889031
         0.15   0.559618     0.019789855
          0.2    0.57926     0.019642017
         0.25   0.598706     0.019446616
          0.3   0.617911     0.019205097
         0.35   0.636831     0.018919229
          0.4   0.655422      0.01859109
         0.45   0.673645     0.018223038
          0.5   0.691462     0.017817682
         0.55    0.70884     0.017377852
          0.6   0.725747     0.016906569
         0.65   0.742154     0.016407007
          0.7   0.758036     0.015882459
         0.75   0.773373        0.0153363
 0.8   0.788145    0.014771954
0.85   0.802337    0.014192855
 0.9    0.81594    0.013602418
0.95   0.828944    0.013003999
   1   0.841345    0.012400872
1.05   0.853141    0.011796198
 1.1   0.864334    0.011192995
1.15   0.874928    0.010594125
 1.2    0.88493    0.010002265
1.25    0.89435    0.009419897
 1.3      0.9032   0.008849289
1.35   0.911492    0.008292493
 1.4   0.919243    0.007751332
1.45   0.926471       0.0072274
 1.5   0.933193    0.006722058
1.55   0.939429    0.006236443
 1.6   0.945201    0.005771466
1.65   0.950529    0.005327824
 1.7   0.955435    0.004906005
1.75   0.959941    0.004506306
 1.8    0.96407    0.004128838
1.85   0.967843    0.003773544
 1.9   0.971283    0.003440215
1.95   0.974412       0.0031285
   2    0.97725    0.002837928
2.05   0.979818    0.002567917
 2.1   0.982136    0.002317795
2.15   0.984222    0.002086813
 2.2   0.986097     0.00187416
2.25   0.987776    0.001678975
 2.3   0.989276    0.001500363
2.35   0.990613    0.001337404
 2.4   0.991802     0.00118917
2.45   0.992857    0.001054725
 2.5    0.99379    0.000933145
2.55   0.994614    0.000823519
 2.6   0.995339    0.000724958
2.65   0.995975    0.000636599
 2.7   0.996533    0.000557615
2.75    0.99702    0.000487211
 2.8   0.997445    0.000424633
2.85   0.997814    0.000369169
 2.9   0.998134    0.000320148
2.95   0.998411    0.000276944
   3    0.99865    0.000238972
3.05   0.998856    0.000205691
 3.1   0.999032    0.000176604
3.15   0.999184    0.000151251
 3.2   0.999313    0.000129214
3.25   0.999423    0.000110113
 3.3   0.999517    9.36009E-05
3.35   0.999596    7.93663E-05
 3.4 0.999663   6.71285E-05
3.45 0.99972     5.6636E-05
 3.5 0.999767   4.76642E-05
mal Distribution




       0       1         2   3   4
       Z



 Distribution Function
0   1   2   3   4
Z
This can be used to calculate the simga level for any process
Step 1: Enter requried data in the yellow boxes.
Step 2: Follow steps 1 though 10.
Step 3: See results




               HOW TO APPROXIMATE THE SIGMA CAPABILITY
                          FOR ANY PROCESS
           STEP ACTION                  EQUATIONS                            YOUR INPUTS
             1  What process do you
                want to consider?
             2  How many units were put
                through the process?

              3    Of the units that went into
                   the process, how many
                   came out OK?
              4    Compute the yield for the
                   process defined in step     = (Step 3) / (Step 2)             #DIV/0!
                   1.
              5    Compute the defect rate
                                                = 1 - (Step 4)                   #DIV/0!
                   based on step 4.
              6    Determine the number of = N number of critical-to-
                   potential things that could quality characteristics
                   create a defect             (CTQs)
              7    Compute the defect rate
                                                = (Step 5) / (Step 6)            #DIV/0!
                   per CTQ characteristic
              8    Compute the defects per
                   million opportunities        = (Step 7) x 1,000,000           #DIV/0!
                   (DPMO)
              9    The DPMO (Step 8) is
                   converted into a sigma
                                                                                 #DIV/0!
                   value for you in the
                   column at right.
             10    Draw conclusions
                   Instructions:
                   1. Replace the sample values in the yellow cells
                   2. The calculations are done for you in the white cells

                   This table is from Mike Harry: "Six Sigma Breakthrough Process…"




                          337b20ea-ea98-43e1-b6c6-82ca7917b564.xlsx;Sigma level
                                               Dan Hintz
**Created by Dan Hintz




              337b20ea-ea98-43e1-b6c6-82ca7917b564.xlsx;Sigma level
                                   Dan Hintz
Use this handy worksheet to calculate your parts-per-million quality level from your process capability.
You can even work the calculation the other way - by entering parts-per-million to determine the equivalent process capability.
Enter your values in the white cells.




                                                                                             To Get
                Enter Sigma                To Get                                            Sigma
                Capability:                 PPM                    Enter PPM:               Capability
                      6.0          =         3.4                        3.4           =          6.0


                 (These calculations include the 1.5s shift that was advocated by Mikel Harry and is the
                 basis for published sigma capability to process PPM equivlents.)
                             **Created by Dan Hintz
valent process capability.
Designed to make a Pareto chart for up to 10 categories

Step 1: Enter the labels for the categories with the label for the largest category first.
Step 2: Enter a weight for the category (if desired).
Step 3: Enter the quantities for each category.
Step 4: Sort Categories from largest result to smallest.

            Step 1                             Step 2        Step 3
                        Category                  Weight     Frequency       Result          Cumulative
                                                                                      0               0
                                                                                      0               0
                                                                                      0               0
                                                                                      0               0
                                                                                      0               0
                                                                                      0               0
                                                                                      0               0
                                                                                      0               0
                                                                                      0               0
                                                                                      0               0
               Learn About Pareto Charts




Cumulative %
                                                     Pareto Chart
  #DIV/0!
  #DIV/0!
  #DIV/0!                       1
  #DIV/0!                     0.9
  #DIV/0!
  #DIV/0!                     0.8
  #DIV/0!                     0.7
                   Quantity




  #DIV/0!                     0.6
  #DIV/0!
  #DIV/0!                     0.5
                              0.4
                              0.3
                              0.2
                              0.1   0%     0%   0%   0%    0%   0%    0%    0%   0%   0%
                                0

                                                          Category

                                                      Result     Cumulative %
     100.00%
     90.00%
     80.00%
     70.00%
     60.00%
     50.00%
     40.00%
     30.00%
     20.00%
0%   10.00%
     0.00%
Designed to make a Force Field Analysis for up to 10 categories                     Learn About Force Field

Step 1: Enter the Change Proposal.
Step 2: Enter the Driving Forces.
Step 3: Enter the Restraining Forces.
Step 4: Determine steps to increase acceptance if needed.




                                         Driving Forces           Change Proposal




                                                                     Proposal
Learn About Force Field Analysis




          Restraining Forces
Used to make a SIPOC diagram
Step 1: Enter information into the areas provided


         Suppliers                             Input   Process   Output
Output   Customers
Used to make a SIPOC Relationship Matrix
Step 1: Enter Inputs and Outputs into SIPOC tab
Step 2: Enter ranking weight in orange cells under Outputs
Step 3: Enter relationship values in yellow cells




                        Outputs/ Ranking
           Inputs


                                                  0




                                                           0




                                                               0




                                                                   0




                                                                       0




                                                                           0




                                                                               0
                    0
                    0
                    0
                    0
                    0
                    0
                    0
                    0
                    0
                    0
                    0
                    0
                    0
                    0
                    0
                    0
                    0
                    0
                    0
                    0

                                                  Legend
                                             Strong = 9
                                           Moderate = 3
                                             Weak = 1
                                              None = 0
0




0




0




0




0




0




0




0




0




0
                  Weighted Sum % of grand total
0




    0




            0
                               0   #DIV/0!
                               0   #DIV/0!
                               0   #DIV/0!
                               0   #DIV/0!
                               0   #DIV/0!
                               0   #DIV/0!
                               0   #DIV/0!
                               0   #DIV/0!
                               0   #DIV/0!
                               0   #DIV/0!
                               0   #DIV/0!
                               0   #DIV/0!
                               0   #DIV/0!
                               0   #DIV/0!
                               0   #DIV/0!
                               0   #DIV/0!
                               0   #DIV/0!
                               0   #DIV/0!
                               0   #DIV/0!
                               0   #DIV/0!
    Grand Total                0
Designed to make a process flow diagram                                           Learn About Flow Charts

Step 1: Copy and paste the below symbols into the white space provided.




     Activity       Transportation
                                          Inspection
                                                               Storage    Delay
Learn About Flow Charts
Used to make a C&E diagram                                                                           Learn About C and E Diagrams
Step 1: Enter problem statement in the area provided
Step 2: Brainstorm the major categories of the problem. Generic headings are provided.
Step 3: Right click on the arrow and choose "Edit Text" to enter the brainstormed ideas
Step 4: Enter text desired for the arrow


    MANPOWER                                     METHOD                                    MACHINE




                                                                                                                      Enter Problem
                                                                                                                        Statement
                                                                                                                           Here




                                                 MOTHER
  MEASUREMENT                                                                             MATERIAL
                                                 NATURE
Used to analyze a Gage R&R for up to 10 parts, 2 or 3 operators, and 2 or 3 trials
Step 1: enter study data in the yellow boxes. See results.

                                                                  GAGE R&R STUDY
                                                                  EQUIPMENT:
                                                                  DATE:
OPERATOR A           NAME:                                                          OPERATOR B            NAME:                                     OPERATOR C        NAME:
 SAMPLE (n)       1ST TRIAL -B    2ND TRIAL -C     3RD TRIAL -D      RANGE          1ST TRIAL - F      2ND TRIAL - G   3RD TRIAL - H     RANGE      1ST TRIAL -J   2ND TRIAL - K   3RD TRIAL -L    RANGE
      1
      2
      3
      4
      5
      6
      7
      8
      9
     10
   TOTALS               0                0               0           0.0000                0                0                0           0.0000          0              0               0         0.0000
                 SUM OF B,C,D            0                                         SUM OF F,G,H             0                                       SUM OF J,K,L        0
                  AVE. X BAR A           0            Rbar A        #DIV/0!         AVE. X BAR B            0             Rbar B         #DIV/0!    AVE. X BAR C        0            Rbar C       #DIV/0!

    Rbar A           #DIV/0!
    Rbar B           #DIV/0!
   Rbar C            #DIV/0!                         # TRIALS          D4                              (AVE. R BAR)      * (D4)     =     UCLr                     MAX. X BAR           0
    SUM              #DIV/0!                             2            3.27                                #DIV/0!        Not 2 or 3      #DIV/0!                    MIN. X BAR          0
 AVE. R BAR          #DIV/0!                             3            2.58                         ALL RANGE VALUES OVER UCL ARE RECALCULATED                      X BAR DIFF.          0
                                                                                                         TO REDUCE TO AVE. RANGE VALUE
REPEATABILITY-EQUIPMENT VARIATION (EV)                                                                                                                             ADDITIONAL INFORMATION
    EV =          AVE. R BAR *          k1                                                            NO. TRIALS (m)         2              3
    EV =             #DIV/0!         Not 2 or 3                         n                                   k1              0.89           0.59
    EV =             #DIV/0!                                            0
                                                                        m
REPRODUCIBILITY- APPRAISER VARIATION (AV)                               0                              OPERATORS             2              3
    AV =         SQRT OF [(X BAR DIFF.)*(k2)]^2-[(EV^2)/(n*m)]         k2                                   k2             0.7071         0.5231
    AV =            #VALUE!                                         Not 2 or 3                                          n = NUMBER OF PARTS
                                                                                                                        m = NUMBER OF TRIALS
REPEATABILITY AND REPRODUCIBILITY                                            Tolerance
   R&R =         SQRT OF[(EV)^2+(AV)^2]                               USL                 LSL                                            % GRRtol
   R&R =             #DIV/0!                                        10.000000            .000000                       GRRtol at 5.15s   #DIV/0!
                                                                    differnce=       10.000000                          GRRtol at 6s     #DIV/0!
                                                                                                                                                                            (constant values rounded)




                                                                            Rbar Chart

          1.00
          0.90
          0.80
                                                                                      0.00
                                                                                      0.10
                                                                                      0.20
                                                                                      0.30
                                                                                      0.40
                                                                                      0.50
                                                                                      0.60
                                                                                      0.70
                                                                                      0.80




                                                    0.10
                                                    0.20
                                                    0.40
                                                    0.50
                                                    0.60
                                                    0.70
                                                    0.80
                                                    0.90
                                                    1.00




                                                    0.00
                                                    0.30




0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00




0.00
                                              OP1 - 1                           OP1 - 1

                                              OP1 - 2                           OP1 - 2
                                              OP1 - 3                           OP1 - 3
                                              OP1 - 4                           OP1 - 4
                                              OP1 - 5                           OP1 - 5
                                              OP1 - 6                           OP1 - 6
                                              OP1 - 7                           OP1 - 7
                                              OP1 - 8                           OP1 - 8
                                              OP1 - 9                           OP1 - 9
                                             OP1 - 10                          OP1 - 10




                              Operator
                                              OP2 - 1                           OP2 - 1
                                              OP2 - 2                           OP2 - 2
                                                                        Data




                                              OP2 - 3                           OP2 - 3
                                              OP2 - 4                           OP2 - 4
                                              OP2 - 5                           OP2 - 5
                                                                        UCL




                                              OP2 - 6                           OP2 - 6
                                                           Xbar Chart




                                              OP2 - 7                           OP2 - 7




                              Central Line
                                                                        Rbar




                                              OP2 - 8                           OP2 - 8




       Operator by Operator
                                              OP2 - 9                           OP2 - 9
                                             OP2 - 10                          OP2 - 10
                                                                        LCL




                                                                                OP3 - 1
                              UCL             OP3 - 1
                                              OP3 - 2                           OP3 - 2
                                              OP3 - 3                           OP3 - 3
                                              OP3 - 4                           OP3 - 4
                              LCL



                                              OP3 - 5                           OP3 - 5
                                              OP3 - 6                           OP3 - 6
                                              OP3 - 7                           OP3 - 7
                                              OP3 - 8                           OP3 - 8
                                              OP3 - 9                           OP3 - 9
                                             OP3 - 10                          OP3 - 10
0.00
       1   2   3   4          5     6    7    8   9   10


                       OP 1       OP2   OP3
                     n=            0                                                                                    Xbar chart
                                                                    Average     Range                    Central Line     UCL
OP1 - 1                                                                                                    #DIV/0!       #DIV/0!
OP1 - 2                                                                                                    #DIV/0!       #DIV/0!
OP1 - 3                                                                                                    #DIV/0!       #DIV/0!
OP1 - 4                                                                                                    #DIV/0!       #DIV/0!
OP1 - 5                                                                                     A2   ERROR     #DIV/0!       #DIV/0!
OP1 - 6                                                                                     D4   ERROR     #DIV/0!       #DIV/0!
OP1 - 7                                                                                     D3   ERROR     #DIV/0!       #DIV/0!
OP1 - 8                                                                                     d2   ERROR     #DIV/0!       #DIV/0!
OP1 - 9                                                                                                    #DIV/0!       #DIV/0!
OP1 - 10                                                                                                   #DIV/0!       #DIV/0!
OP2 - 1                                                                                                    #DIV/0!       #DIV/0!
OP2 - 2                                                                                                    #DIV/0!       #DIV/0!
OP2 - 3                                                                                                    #DIV/0!       #DIV/0!
OP2 - 4                                                                                                    #DIV/0!       #DIV/0!
OP2 - 5                                                                                                    #DIV/0!       #DIV/0!
OP2 - 6                                                                                                    #DIV/0!       #DIV/0!
OP2 - 7                                                                                                    #DIV/0!       #DIV/0!
OP2 - 8                                                                                                    #DIV/0!       #DIV/0!
OP2 - 9                                                                                                    #DIV/0!       #DIV/0!
OP2 - 10                                                                                                   #DIV/0!       #DIV/0!
OP3 - 1                                                                                                    #DIV/0!       #DIV/0!
OP3 - 2                                                                                                    #DIV/0!       #DIV/0!
OP3 - 3                                                                                                    #DIV/0!       #DIV/0!
OP3 - 4                                                                                                    #DIV/0!       #DIV/0!
OP3 - 5                                                                                                    #DIV/0!       #DIV/0!
OP3 - 6                                                                                                    #DIV/0!       #DIV/0!
OP3 - 7                                                                                                    #DIV/0!       #DIV/0!
OP3 - 8                                                                                                    #DIV/0!       #DIV/0!
OP3 - 9                                                                                                    #DIV/0!       #DIV/0!
OP3 - 10                                                                                                   #DIV/0!       #DIV/0!

                                                    Grand Average     #DIV/0!
                                                     Avg Range                    #DIV/0!                               Rbar chart
                                                                                                         Central Line     UCL
                                                                                                           #DIV/0!      #VALUE!
                                                                                                           #DIV/0!      #VALUE!
                                                                                                           #DIV/0!      #VALUE!
                                                                                                           #DIV/0!      #VALUE!
                                                                                                           #DIV/0!      #VALUE!
                                                                                                           #DIV/0!      #VALUE!
                                                                                                           #DIV/0!      #VALUE!
                                                                                                           #DIV/0!      #VALUE!
                                                                                                           #DIV/0!      #VALUE!
           n Sample size    A2         D3    D4           d2                                               #DIV/0!      #VALUE!
                2          1.88         0   3.267        1.128                                             #DIV/0!      #VALUE!
                3          1.023        0   2.574        1.693                                             #DIV/0!      #VALUE!
#DIV/0!   #VALUE!
#DIV/0!   #VALUE!
#DIV/0!   #VALUE!
#DIV/0!   #VALUE!
#DIV/0!   #VALUE!
#DIV/0!   #VALUE!
#DIV/0!   #VALUE!
#DIV/0!   #VALUE!
#DIV/0!   #VALUE!
#DIV/0!   #VALUE!
#DIV/0!   #VALUE!
#DIV/0!   #VALUE!
#DIV/0!   #VALUE!
#DIV/0!   #VALUE!
#DIV/0!   #VALUE!
#DIV/0!   #VALUE!
#DIV/0!   #VALUE!
#DIV/0!   #VALUE!
Xbar chart
              LCL
             #DIV/0!
             #DIV/0!
             #DIV/0!
             #DIV/0!
             #DIV/0!
             #DIV/0!
             #DIV/0!
             #DIV/0!
             #DIV/0!
             #DIV/0!
             #DIV/0!
             #DIV/0!
             #DIV/0!
             #DIV/0!
             #DIV/0!
             #DIV/0!
             #DIV/0!
             #DIV/0!
             #DIV/0!
             #DIV/0!
             #DIV/0!
             #DIV/0!
             #DIV/0!
             #DIV/0!
             #DIV/0!
             #DIV/0!
             #DIV/0!
             #DIV/0!
             #DIV/0!
             #DIV/0!



Rbar chart
               LCL
             #VALUE!
             #VALUE!
             #VALUE!
             #VALUE!
             #VALUE!
             #VALUE!
             #VALUE!
             #VALUE!
             #VALUE!
             #VALUE!
             #VALUE!
             #VALUE!
#VALUE!
#VALUE!
#VALUE!
#VALUE!
#VALUE!
#VALUE!
#VALUE!
#VALUE!
#VALUE!
#VALUE!
#VALUE!
#VALUE!
#VALUE!
#VALUE!
#VALUE!
#VALUE!
#VALUE!
#VALUE!
This can be used to create a histogram for up to 50 samples.
By default, the histogram is set with the number of cells to sqrt n.                                       Learn Abou
Step 1: enter sample values into column B. See results.

             Step 1
         1
         2
         3
                                                                             Histogram
         4
         5
         6                       1
         7                     0.9
         8
         9                     0.8
        10                     0.7
        11
        12
                               0.6
        13                     0.5
        14
        15
                               0.4
        16                     0.3
        17                     0.2
        18
        19                     0.1
        20                       0
        21
        22
        23
        24
        25
        26
        27
        28                                                zone value   count % in zone
        29                           +3 to +100 stdev       #DIV/0!     #N/A    #N/A                      % between
        30                              +2 to +3 stdev      #DIV/0!     #N/A    #N/A     +1 to -1 stdev
        31                              +1 to +2 stdev      #DIV/0!     #N/A    #N/A          #N/A
        32                            xbar to +1 stdev      #DIV/0!     #N/A    #N/A
        33                            xbar to -1 stdev      #DIV/0!     #N/A    #N/A
        34                               -1 to -2 stdev     #DIV/0!     #N/A    #N/A
        35                               -2 to -3 stdev     #DIV/0!     #N/A    #N/A
        36                            -3 to -100 stdev      #DIV/0!     #N/A    #N/A
        37
        38
        39
        40
        41
        42
        43
        44
        45
        46
        47
48
49
50
    Learn About Histograms



                                                         max       0.00      xbar           #DIV/0!
                                                          min      0.00      sample stdev   #DIV/0!
                                                          n=        0
                                                    sqrt(n) =       0
                                                  No. cells =       0

                                cells interval                           0
                                                 From           Up to
                                                                  Bins           Freq
                                             0                        0.00              0         To use the
                                             1          0.00          0.00              0         excel:
                                             2          0.00          0.00              0         1) Select the rang
                                             3          0.00          0.00              0         remember to exte
                                             4          0.00          0.00              0         cell below the bin
                                             5          0.00          0.00              0         2) Use the functio
                                             6          0.00          0.00              0         'frequency' (in sta
                                                                                                  3) In the resulting
                                             7          0.00          0.00              0
                                                                                                  data range and th
                                             8          0.00          0.00              0
                                                                                                  4) press 'shft
                                                                                 #N/A             array formula.


                                           I like to add one cell interval above and below
                                           the actual bins. It makes the histogram 'pretty'.
                                           Totally optional.




 % between
+2 to -2 stdev +3 to -3 stdev
     #N/A           #N/A
To use the frequency() function in
excel:
1) Select the range next to the bins,
remember to extend the selection one
cell below the bins range.
2) Use the function wizard, select
'frequency' (in statistical functions)
3) In the resulting dialog, select the
data range and then the bins range.
4) press 'shft-ctrl-enter' to enter an
array formula.
Used to create a run chart up to 30 samples
Step 1: enter sample values into column B. See results.

            Step 1
        1
        2
        3
                                                                                            Run Chart
        4
        5
        6                         1.20
        7
        8                         1.00
        9
       10
       11
                                  0.80
       12
       13
                                  0.60
       14
       15                         0.40
       16
       17                         0.20
       18
       19                         0.00
       20                                      1   2      3   4   5   6   7   8   9   10 11 12 13 14
       21
       22
       23
       24
       25
       26
       27
       28
       29
       30
Run Chart




   14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30


      Series1
Used to create a Multi-Vari chart for n=2 to 6, up to 25 samples                          USL=
Step 1: Enter sample values and specification limits into the yellow spaces               LSL=
Step 2: Review chart for variation sources

              Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9
          1
          2
          3
          4
          5
          6


      USL            0         0           0          0          0            0   0   0      0
      LSL            0         0           0          0          0            0   0   0      0

  1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
  0
      0                                                         5
Sample 10 Sample 11 Sample 12 Sample 13 Sample 14 Sample 15 Sample 16 Sample 17 Sample 18




        0         0         0         0         0            0      0         0         0
        0         0         0         0         0            0      0         0         0




        10                                              15
Sample 19 Sample 20 Sample 21 Sample 22 Sample 23 Sample 24 Sample 25




        0         0         0         0         0         0         0
        0         0         0         0         0         0         0




                                                                        1
                                                                        2
                                                                        3
                                                                        4
                                                                        5
                                                                        6
                                                                        USL
                                                                        LSL

             20                                               25
Used to create an Individual X & Moving Range chart up to 30 samples
Step 1: Enter sample values into the yellow spaces in column B.
Step 2: Enter value for n of 2 or 3 to determine sample size for moving range
Step 3: Enter specification limits to calculate capablity metrics.

                   n=                          USL=                                                 IX Chart
                        MR (2 or 3)            LSL=                                  Central Line
         1                                                                              #DIV/0!
         2                                             Average             #DIV/0!      #DIV/0!
         3                 FALSE                       Avg Moving Range    #DIV/0!      #DIV/0!
         4                 FALSE                                                        #DIV/0!
         5                 FALSE                                    E2=     #N/A        #DIV/0!
         6                 FALSE                                    D4=     #N/A        #DIV/0!
         7                 FALSE                                    D3=     #N/A        #DIV/0!
         8                 FALSE                                                        #DIV/0!
         9                 FALSE                                      s=   #DIV/0!      #DIV/0!
        10                 FALSE                                    Zu=    #DIV/0!      #DIV/0!
        11                 FALSE                                     Zl=   #DIV/0!      #DIV/0!
        12                 FALSE                                                        #DIV/0!
        13                 FALSE                                   Cp=     #DIV/0!      #DIV/0!
        14                 FALSE                                   CR=     #DIV/0!      #DIV/0!
        15                 FALSE                                  Cpu=     #DIV/0!      #DIV/0!
        16                 FALSE                                  Cpl=     #DIV/0!      #DIV/0!
        17                 FALSE                                  Cpk=     #DIV/0!      #DIV/0!
        18                 FALSE                                                        #DIV/0!
        19                 FALSE                                                        #DIV/0!
        20                 FALSE                                                        #DIV/0!
        21                 FALSE                                                        #DIV/0!
        22                 FALSE                                                        #DIV/0!
        23                 FALSE                                                        #DIV/0!
        24                 FALSE                                                        #DIV/0!
        25                 FALSE                                                        #DIV/0!
        26                 FALSE                                                        #DIV/0!
        27                 FALSE                                                        #DIV/0!
        28                 FALSE                                                        #DIV/0!
        29                 FALSE                                                        #DIV/0!
        30                 FALSE                                                        #DIV/0!


                                                                                                    MR Chart
                                                                                     Central Line
           E2         n
Obervations in sample D3                  D4           d2                               #DIV/0!
         2       2.66                 0        3.267              1.128                 #DIV/0!
         3      1.772                 0        2.574              1.693                 #DIV/0!
         4      1.457                 0        2.282              2.059                 #DIV/0!
         5       1.29                 0        2.114              2.326                 #DIV/0!
         6      1.184                 0        2.004              2.536                 #DIV/0!
                                                                                        #DIV/0!
                                                                                        #DIV/0!
                                                                                        #DIV/0!
                                                                                        #DIV/0!
                                                                                        #DIV/0!
#DIV/0!
#DIV/0!
#DIV/0!
#DIV/0!
#DIV/0!
#DIV/0!
#DIV/0!
#DIV/0!
#DIV/0!
#DIV/0!
#DIV/0!
#DIV/0!
#DIV/0!
#DIV/0!
#DIV/0!
#DIV/0!
#DIV/0!
#DIV/0!
#DIV/0!
IX Chart
  UCL       LCL
 #DIV/0!   #DIV/0!
                                                                     IX Chart
 #DIV/0!   #DIV/0!
 #DIV/0!   #DIV/0!
 #DIV/0!   #DIV/0!   1.00
 #DIV/0!   #DIV/0!
 #DIV/0!   #DIV/0!
 #DIV/0!   #DIV/0!
                     0.80
 #DIV/0!   #DIV/0!
 #DIV/0!   #DIV/0!   0.60
 #DIV/0!   #DIV/0!
 #DIV/0!   #DIV/0!
 #DIV/0!   #DIV/0!   0.40
 #DIV/0!   #DIV/0!
 #DIV/0!
 #DIV/0!
           #DIV/0!
           #DIV/0!
                     0.20
 #DIV/0!   #DIV/0!
 #DIV/0!   #DIV/0!   0.00
 #DIV/0!   #DIV/0!          1   2   3   4   5   6   7   8   9   10 11 12 13 14 15 16
 #DIV/0!   #DIV/0!
 #DIV/0!   #DIV/0!
 #DIV/0!   #DIV/0!
                                                        Data           Central Line
 #DIV/0!   #DIV/0!
 #DIV/0!   #DIV/0!
 #DIV/0!   #DIV/0!
 #DIV/0!   #DIV/0!
 #DIV/0!   #DIV/0!
 #DIV/0!   #DIV/0!
 #DIV/0!   #DIV/0!
 #DIV/0!   #DIV/0!
 #DIV/0!   #DIV/0!


MR Chart
 UCL        LCL
 #N/A       #N/A
                                                                     MR Chart
 #N/A       #N/A
 #N/A       #N/A
 #N/A       #N/A      1
 #N/A       #N/A
 #N/A       #N/A
 #N/A       #N/A     0.8
 #N/A       #N/A
 #N/A       #N/A     0.6
 #N/A       #N/A
 #N/A       #N/A
                     0.4
#N/A   #N/A   0.4
#N/A   #N/A
#N/A   #N/A
#N/A   #N/A
              0.2
#N/A   #N/A
#N/A   #N/A    0
#N/A   #N/A         1   2   3   4   5   6   7   8   9   10 11 12 13 14 15 16
#N/A   #N/A
#N/A   #N/A
#N/A   #N/A                                     Data           Central Line
#N/A   #N/A
#N/A   #N/A
#N/A   #N/A
#N/A   #N/A
#N/A   #N/A
#N/A   #N/A
#N/A   #N/A
#N/A   #N/A
#N/A   #N/A
         16 17 18 19 20 21 22 23 24 25 26 27 28 29 30


entral Line       UCL         LCL




 Chart
       16 17 18 19 20 21 22 23 24 25 26 27 28 29 30


ntral Line      UCL         LCL
Used to create a Xbar R chart up to 25 samples for n = 2 to 6                                                                                                                                    USL=                           Cp=     #DIV/0!
Step 1: Count is based on number of values in sample 1 and automatically determined.                                                                 A2         D3         D4          d2        LSL=                           CR=     #DIV/0!
Step 2: Enter sample values and the USL and LSL into the yelllow cells.                                                       n=          0         #N/A       #N/A       #N/A        #N/A                                     Cpu=     #DIV/0!          s=   #DIV/0!
Step 3: See results.                                                                                                                                                                                                           Cpl=     #DIV/0!
Step 4: To eliminate a point from the calculations and chart, delete both answers for Xbar and R shown in orange.                                   Learn About Statistical Process Control                                    Cpk=     #DIV/0!

Sample/Observation                 1         2           3          4            5           6           7           8           9            10         11         12         13         14        15        16        17         18         19         20         21        22        23        24        25   Obervations in sample n A2       D3       D4           d2
                     1                                                                                                                                                                                                                                                                                                                  2    1.88      0        3.267        1.128
                     2                                                                                                                                                                                                                                                                                                                  3   1.023      0        2.574        1.693
                     3                                                                                                                                                                                                                                                                                                                  4   0.729      0        2.282        2.059
                     4                                                                                                                                                                                                                                                                                                                  5   0.577      0        2.114        2.326
                     5                                                                                                                                                                                                                                                                                                                  6   0.483      0        2.004        2.536
                     6

Sum
Xbar
R

Xbar-bar                 #DIV/0!       #DIV/0!   #DIV/0!     #DIV/0!    #DIV/0!      #DIV/0!     #DIV/0!     #DIV/0!     #DIV/0!     #DIV/0!       #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!
Rbar                     #DIV/0!       #DIV/0!   #DIV/0!     #DIV/0!    #DIV/0!      #DIV/0!     #DIV/0!     #DIV/0!     #DIV/0!     #DIV/0!       #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!

UCLx                     #DIV/0!       #DIV/0!   #DIV/0!     #DIV/0!    #DIV/0!      #DIV/0!     #DIV/0!     #DIV/0!     #DIV/0!     #DIV/0!       #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!
LCLx                     #DIV/0!       #DIV/0!   #DIV/0!     #DIV/0!    #DIV/0!      #DIV/0!     #DIV/0!     #DIV/0!     #DIV/0!     #DIV/0!       #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!
UCLR                      #N/A          #N/A      #N/A        #N/A       #N/A         #N/A        #N/A        #N/A        #N/A        #N/A          #N/A       #N/A       #N/A       #N/A       #N/A      #N/A      #N/A      #N/A       #N/A       #N/A       #N/A       #N/A      #N/A      #N/A      #N/A
LCLR                      #N/A          #N/A      #N/A        #N/A       #N/A         #N/A        #N/A        #N/A        #N/A        #N/A          #N/A       #N/A       #N/A       #N/A       #N/A      #N/A      #N/A      #N/A       #N/A       #N/A       #N/A       #N/A      #N/A      #N/A      #N/A




                                                                                                                                       Xbar Chart                                                   Xbar                 UCLxbar                        LCLxbar                       Xbarbar
           1.0000
           0.8000
           0.6000
           0.4000
           0.2000
           0.0000
                                1           2          3          4          5           6           7           8           9            10            11      12         13          14        15        16       17        18         19         20         21        22        23        24        25




                                                                                                                                              R Chart                                                                                                     R               UCLRbar
   1.0000

   0.8000

   0.6000

   0.4000

   0.2000

   0.0000
                         1             2         3           4          5            6           7           8           9           10            11         12         13         14         15        16        17        18         19         20         21         22        23        24        25
Used to create a Xbar S chart up to 25 samples for n = 2 to 6                                                                                                                                 USL=                           Cp=     #DIV/0!
Step 1: Count is based on number of values in sample 1 and automatically determined.                                                                 A3         B3        B4        d2        LSL=                           CR=     #DIV/0!
Step 2: Enter sample values into the yelllow cells.                                                                           n=          0         #N/A       #N/A      #N/A      #N/A                                     Cpu=     #DIV/0!          s=   #DIV/0!
Step 3: See results.                                                                                                                                                                                                        Cpl=     #DIV/0!
Step 4: To eliminate a point from the calculations and chart, delete both answers for Xbar and S shown in orange.                                                                                                           Cpk=     #DIV/0!

Sample/Observation                 1         2           3          4            5           6           7           8           9            10         11        12        13        14        15        16        17         18         19         20         21        22        23        24        25   Obervations in sample n A3       B3          B4           c4
                     1                                                                                                                                                                                                                                                                                                               2   2.659         0        3.267        0.7979
                     2                                                                                                                                                                                                                                                                                                               3   1.954         0        2.568        0.8862
                     3                                                                                                                                                                                                                                                                                                               4   1.628         0        2.266        0.9213
                     4                                                                                                                                                                                                                                                                                                               5   1.427         0        2.089           0.94
                     5                                                                                                                                                                                                                                                                                                               6   1.287      0.03         1.97        0.9515
                     6

Sum
Xbar
S

Xbar-bar                 #DIV/0!       #DIV/0!   #DIV/0!     #DIV/0!    #DIV/0!      #DIV/0!     #DIV/0!     #DIV/0!     #DIV/0!     #DIV/0!       #DIV/0!    #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!
Sbar                     #DIV/0!       #DIV/0!   #DIV/0!     #DIV/0!    #DIV/0!      #DIV/0!     #DIV/0!     #DIV/0!     #DIV/0!     #DIV/0!       #DIV/0!    #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!

UCLx                     #DIV/0!       #DIV/0!   #DIV/0!     #DIV/0!    #DIV/0!      #DIV/0!     #DIV/0!     #DIV/0!     #DIV/0!     #DIV/0!       #DIV/0!    #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!
LCLx                     #DIV/0!       #DIV/0!   #DIV/0!     #DIV/0!    #DIV/0!      #DIV/0!     #DIV/0!     #DIV/0!     #DIV/0!     #DIV/0!       #DIV/0!    #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!
UCLS                      #N/A          #N/A      #N/A        #N/A       #N/A         #N/A        #N/A        #N/A        #N/A        #N/A          #N/A       #N/A      #N/A      #N/A      #N/A      #N/A      #N/A      #N/A       #N/A       #N/A       #N/A       #N/A      #N/A      #N/A      #N/A
LCLS                      #N/A          #N/A      #N/A        #N/A       #N/A         #N/A        #N/A        #N/A        #N/A        #N/A          #N/A       #N/A      #N/A      #N/A      #N/A      #N/A      #N/A      #N/A       #N/A       #N/A       #N/A       #N/A      #N/A      #N/A      #N/A




                                                                                                                                       Xbar Chart                                                Xbar                 UCLxbar                        LCLxbar                       Xbarbar
           1.0000
           0.8000
           0.6000
           0.4000
           0.2000
           0.0000
                                1           2          3          4          5           6           7           8           9            10            11      12        13        14        15        16       17        18         19         20         21        22        23        24        25




                                                                                                                                              S Chart                                                                                           S         UCLS         LCLS          Sbar
   1.0000

   0.8000

   0.6000

   0.4000

   0.2000

   0.0000
                         1             2         3           4          5            6           7           8           9           10            11         12        13        14        15        16        17        18         19         20         21         22        23        24        25
Used to create a Median and Range chart up to 25 samples for n = 3 or 5
Step 1: Count is based on number of values in sample 1 and automatically determined.
Step 2: Enter sample values into the yelllow cells.
Step 3: See results.
Step 4: To eliminate a point from the calculations and chart, delete both answers for Median and Range shown in orange.

Sample/Observation                 1             2             3             4             5             6             7
                     1
                     2
                     3
                     4
                     5


Sum
Median
R

Median-bar               #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!
Rbar                     #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!

UCLmedian                #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!
LCLmedian                #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!
UCLR                      #N/A          #N/A          #N/A          #N/A          #N/A          #N/A          #N/A
LCLR                      #N/A          #N/A          #N/A          #N/A          #N/A          #N/A          #N/A




             1.0000
             0.8000
             0.6000
             0.4000
             0.2000
             0.0000
                               1            2             3             4            5             6             7




    1.0000
1.0000

0.8000

0.6000

0.4000

0.2000

0.0000
         1   2   3   4   5   6   7   8
                                                                                                                     USL=
                                                               median A2     D3           D4           d2            LSL=
                                              n=      0          #N/A       #N/A         #N/A         #N/A

and Range shown in orange.

                       8             9         10         11          12           13           14           15         16         17




             #DIV/0!       #DIV/0!       #DIV/0!    #DIV/0!     #DIV/0!    #DIV/0!      #DIV/0!      #DIV/0!      #DIV/0!    #DIV/0!
             #DIV/0!       #DIV/0!       #DIV/0!    #DIV/0!     #DIV/0!    #DIV/0!      #DIV/0!      #DIV/0!      #DIV/0!    #DIV/0!

             #DIV/0!       #DIV/0!       #DIV/0!    #DIV/0!     #DIV/0!    #DIV/0!      #DIV/0!      #DIV/0!      #DIV/0!    #DIV/0!
             #DIV/0!       #DIV/0!       #DIV/0!    #DIV/0!     #DIV/0!    #DIV/0!      #DIV/0!      #DIV/0!      #DIV/0!    #DIV/0!
              #N/A          #N/A          #N/A       #N/A        #N/A       #N/A         #N/A         #N/A         #N/A       #N/A
              #N/A          #N/A          #N/A       #N/A        #N/A       #N/A         #N/A         #N/A         #N/A       #N/A




                                           Median Chart                                              Median                    UCLmedia




       7         8             9            10         11         12         13           14           15           16        17




                                               R Chart
8   9   10   11   12   13   14   15   16   17   18
                  Cp=    #DIV/0!
                  CR=    #DIV/0!
                 Cpu=    #DIV/0!          s=   #DIV/0!
                 Cpl=    #DIV/0!
                 Cpk=    #DIV/0!

         18         19         20         21         22         23         24         25




   #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!
   #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!

   #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!
   #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!
    #N/A       #N/A       #N/A       #N/A       #N/A       #N/A       #N/A       #N/A
    #N/A       #N/A       #N/A       #N/A       #N/A       #N/A       #N/A       #N/A




UCLmedian                  LCLmedian                       Median-bar




    18         19         20         21        22         23         24         25




                         R          UCLR            LCLR             R
18   19   20   21   22   23   24   25
Obervations in sample n Median A2 D3       D4     d2
                       3     1.187     0    2.574      1.693
                       5     0.691     0    2.114      2.326
                       7     0.509 0.076    1.924      2.704
                       9     0.412 0.184    1.816       2.97
Used to create a Pre-control chart up to 25 samples for n = 1 to 6
Step 1: Enter sample values and specification limits into the Sample/observation and USL/LSL yelllow cells.
Step 2: See results.


Sample/Observation                 1             2             3             4             5             6             7             8
                     1
                     2
                     3
                     4
                     5
                     6

Xbar                     #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!


Upper Red                #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!
Upper Yellow             #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!
Upper Green              #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!
Lower Green              #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!
Lower Yellow             #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!
Lower Red                #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!
                            USL=                          Red/Yellow              0
                            LSL=                        Yellow/Green              0
                                              0         Yellow/Green              0
                             MS=              0           Red/Yellow              0

          9         10         11         12            13         14         15            16         17         18




#DIV/0!       #DIV/0!    #DIV/0!    #DIV/0!       #DIV/0!    #DIV/0!    #DIV/0!       #DIV/0!    #DIV/0!    #DIV/0!


#DIV/0!       #DIV/0!    #DIV/0!    #DIV/0!       #DIV/0!    #DIV/0!    #DIV/0!       #DIV/0!    #DIV/0!    #DIV/0!
#DIV/0!       #DIV/0!    #DIV/0!    #DIV/0!       #DIV/0!    #DIV/0!    #DIV/0!       #DIV/0!    #DIV/0!    #DIV/0!
#DIV/0!       #DIV/0!    #DIV/0!    #DIV/0!       #DIV/0!    #DIV/0!    #DIV/0!       #DIV/0!    #DIV/0!    #DIV/0!
#DIV/0!       #DIV/0!    #DIV/0!    #DIV/0!       #DIV/0!    #DIV/0!    #DIV/0!       #DIV/0!    #DIV/0!    #DIV/0!
#DIV/0!       #DIV/0!    #DIV/0!    #DIV/0!       #DIV/0!    #DIV/0!    #DIV/0!       #DIV/0!    #DIV/0!    #DIV/0!
#DIV/0!       #DIV/0!    #DIV/0!    #DIV/0!       #DIV/0!    #DIV/0!    #DIV/0!       #DIV/0!    #DIV/0!    #DIV/0!
      19         20         21         22         23         24         25




#DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!


#DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!
#DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!
#DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!
#DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!
#DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!
#DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!    #DIV/0!
           A2         n
Obervations in sample D3       D4           d2
         2       1.88      0        3.267        1.128
         3      1.023      0        2.574        1.693
         4      0.729      0        2.282        2.059
         5      0.577      0        2.114        2.326
         6      0.483      0        2.004        2.536
Used to create a p chart up to 25 samples
Step 1: Count n is based on number of values in Sample size n and automatically determined.
Step 2: Enter sample values into the yelllow cells.
Step 3: See results.
Step 4: To eliminate a point from the calculations and chart, delete answers for p in orange.

Sub group #                            1             2             3             4         5             6         7         8         9        10        11        12        13        14        15            16        17         18        19        20        21         22        23        24        25
Sample size n
Number of defectives

p

p-bar                        #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!   #DIV/0!       #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!       #DIV/0!   #DIV/0!    #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!    #DIV/0!   #DIV/0!   #DIV/0!
UCLp                         #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!   #DIV/0!       #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!       #DIV/0!   #DIV/0!    #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!    #DIV/0!   #DIV/0!   #DIV/0!
LCLp                         #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!   #DIV/0!       #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!       #DIV/0!   #DIV/0!    #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!    #DIV/0!   #DIV/0!   #DIV/0!




                                                                                                                                           p Chart                                                     p                       UCLp                       LCLp                        p-bar
           1.0000
           0.8000
           0.6000
           0.4000
           0.2000
           0.0000
                                1            2             3            4             5         6             7         8         9        10        11        12        13        14        15            16        17         18        19        20        21        22         23        24        25
Used to create a g chart up to 25 samples                                                                                                                                                                Learn About G charts
Step 1: Input the date and time of each event
Step 2: Enter the days or units between events
Step 3: See results.
Step 4: To eliminate a point from the calculations and chart, delete answers for g in orange.

Sub group #                                  1                 2                 3                 4                 5                 6                 7             8             9             10             11             12             13             14             15             16             17             18             19             20               21             22             23             24             25
Date/Time of event
Units between events

g

g-bar                            #DIV/0!             #DIV/0!           #DIV/0!           #DIV/0!           #DIV/0!           #DIV/0!           #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!        #DIV/0!        #DIV/0!        #DIV/0!        #DIV/0!        #DIV/0!        #DIV/0!        #DIV/0!        #DIV/0!        #DIV/0!        #DIV/0!          #DIV/0!        #DIV/0!        #DIV/0!        #DIV/0!        #DIV/0!
UCLg                             #DIV/0!             #DIV/0!           #DIV/0!           #DIV/0!           #DIV/0!           #DIV/0!           #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!        #DIV/0!        #DIV/0!        #DIV/0!        #DIV/0!        #DIV/0!        #DIV/0!        #DIV/0!        #DIV/0!        #DIV/0!        #DIV/0!          #DIV/0!        #DIV/0!        #DIV/0!        #DIV/0!        #DIV/0!
LCLg                             #DIV/0!             #DIV/0!           #DIV/0!           #DIV/0!           #DIV/0!           #DIV/0!           #DIV/0!       #DIV/0!       #DIV/0!       #DIV/0!        #DIV/0!        #DIV/0!        #DIV/0!        #DIV/0!        #DIV/0!        #DIV/0!        #DIV/0!        #DIV/0!        #DIV/0!        #DIV/0!          #DIV/0!        #DIV/0!        #DIV/0!        #DIV/0!        #DIV/0!




                                                                                                                                                                                             g Chart                                                                               g                              UCLg                                        LCLg                               g-bar
                          1.0000
                          0.8000
                          0.6000
                          0.4000
                          0.2000
                          0.0000
                                                 1                 2                 3                 4                 5                 6             7             8             9             10             11            12         13             14            15             16            17            18             19            20              21             22             23             24             25
Process Failure Modes and Effects Analysis (PFMEA)

    Project:                                                                                                                          Date:




  FMEA Team:                                                                                                                      Prepared by:


SEV = How severe is effect on the customer?
OCC = How frequent is the cause likely to occur?                                                                                                                             Learn About FMEA
DET = How probable is detection of cause?
RPN = Risk priority number in order to rank concerns; calculated as SEV x OCC x DET


                                                                              S                                  O                                                 D           R                                                                                         N S   N O   N D   N R
                                                                                                                                                                                              Actions             Responsibility (target
 Process step     Potential failure mode      Potential failure effects       E          Potential causes        C        Current process controls                 E           P                                                                Actions taken            e E   e C   e E   e P
                                                                                                                                                                                           recommended                   date)
                                                                              V                                  C                                                 T           N                                                                                         w V   w C   w T   w N

                                                                                                                                                                                       What are the actions
                                                                                                                                                                                       for reducing the
                                                                                                                                                                                       occurrence of the          Who is responsible for   What were the actions
                                                                                                                      What are the existing controls that
                                            What is the impact on the              What causes the step to go                                                                          cause or for improving     the recommended          implemented? Include
What is the     In what ways can the step                                                                             either prevent the failure mode
                                            customer if the failure mode is   10   wrong? (i.e., How could the   10                                               10          1000     its detection? You         action? What date        completion month/year         10    10    10    1000
step?           go wrong?                                                                                             from occurring or detect it should it
                                            not prevented or corrected?            failure mode occur?)                                                                                should provide actions     should it be completed   (then recalculate resulting
                                                                                                                      occur?
                                                                                                                                                                                       on all high RPNs and       by?                      RPN).
                                                                                                                                                                                       on severity ratings of 9
                                                                                                                                                                                       or 10.




                                                                                                                                                                                0                                                                                                           0




                                                                                                                                                                                0                                                                                                           0




                                                                                                                                                                                0                                                                                                           0




                                                                                                                                                                                0                                                                                                           0




                                                                                                                                                                                0                                                                                                           0




                                                                                                                                                                                0                                                                                                           0




                                                                                                                                                                                0                                                                                                           0




                                                                                                                                                                                0                                                                                                           0




                                                                                                                                                                                0                                                                                                           0




                                                                                                                                                                                0                                                                                                           0




                                                                                                                                                                                0                                                                                                           0




                                                                                                                                                                                0                                                                                                           0




                   337b20ea-ea98-43e1-b6c6-82ca7917b564.xlsx                                                                                                  Printed 5:57 AM,12/28/2011                                                                                                          Page 79 of 83
Process Control Plan (PCP)
    Project:


  PCP Team:




    Process            Process Step              Output                        Input



What is the sub-                      What is the output of the   What is the input of the process
                 What is the step?
process?                              process step?               step?
               Date:


           Prepared by:




                                   Measurement
      Process specification                                      Control Method
                                    Technique

What are the process
specifications? Identify the   What measures,
                                                        How will this process step be
minimum and maximum            charts, frequency will
                                                        controlled?
specifications and units of    be used?
measure.
                                        link




                Reaction Plan



What action will occur if there is an
occurrence outside of the process
specifications?

				
DOCUMENT INFO
Shared By:
Categories:
Tags:
Stats:
views:2
posted:12/28/2011
language:
pages:83