Basic Quantities.ppt by handongqp

VIEWS: 9 PAGES: 75

• pg 1
```									          EEE 498/598
Overview of Electrical Engineering

Lecture 12:
Overview Of Circuit Theory;
Lumped Circuit Elements; Topology Of
Circuits; Resistors; KCL and KVL;
Resistors in Series and Parallel; Energy
Storage Elements; First-Order Circuits

1
Lecture 12 Objectives
 To commence our study of circuit theory.
 To develop an understanding of the
concepts of Lumped circuit elements;
topology of circuits; resistors; KCL and
KVL; resistors in series and parallel;
energy storage elements; and first-order
circuits.

Lecture 12
Overview of Circuit Theory
 Electrical circuit elements are idealized
models of physical devices that are defined
by relationships between their terminal
voltages and currents. Circuit elements can
have two or more terminals.
 An electrical circuit is a connection of
circuit elements into one or more closed
loops.
Lecture 12
Overview of Circuit Theory
   A lumped circuit is one where all the terminal
voltages and currents are functions of time only.
Lumped circuit elements include resistors,
capacitors, inductors, independent and
dependent sources.
   An distributed circuit is one where the terminal
voltages and currents are functions of position
as well as time. Transmission lines are
distributed circuit elements.

Lecture 12
Overview of Circuit Theory
 Basic quantities are voltage, current, and
power.
 The sign convention is important in
computing power supplied by or absorbed
by a circuit element.
 Circuit elements can be active or passive;
active elements are sources.
Lecture 12
Overview of Circuit Theory
   Current is moving positive electrical charge.
   Measured in Amperes (A) = 1 Coulomb/s
   Current is represented by I or i.
   In general, current can be an arbitrary function
of time.
 Constant current is called direct current (DC).
 Current that can be represented as a sinusoidal
function of time (or in some contexts a sum of
sinusoids) is called alternating current (AC).

Lecture 12
Overview of Circuit Theory
 Voltage is electromotive force provided by
a source or a potential difference between
two points in a circuit.
 Measured in Volts (V): 1 J of energy is
needed to move 1 C of charge through a 1
V potential difference.
 Voltage is represented by V or v.

Lecture 12
Overview of Circuit Theory
 The lower case symbols v and i are usually
used to denote voltages and currents that
are functions of time.
 The upper case symbols V and I are usually
used to denote voltages and currents that
are DC or AC steady-state voltages and
currents.

Lecture 12
Overview of Circuit Theory
   Current has an assumed direction of flow; currents in
the direction of assumed current flow have positive
values; currents in the opposite direction have negative
values.
   Voltage has an assumed polarity; volt drops in with the
assumed polarity have positive values; volt drops of the
opposite polarity have negative values.
   In circuit analysis the assumed polarity of voltages are
often defined by the direction of assumed current flow.

Lecture 12
Overview of Circuit Theory
   Power is the rate at which energy is being
absorbed or supplied.
   Power is computed as the product of voltage
and current:
pt   vt it  or P  VI
   Sign convention: positive power means that
energy is being absorbed; negative power means
that power is being supplied.
Lecture 12
Overview of Circuit Theory

• If p(t) > 0, then the circuit
element is absorbing power
i(t)
from the rest of the circuit.
Rest of                       • If p(t) < 0, then the circuit
+
circuit                       element is supplying power
v(t)                to the rest of the circuit.

-
Circuit element under
consideration

Lecture 12
Overview of Circuit Theory
 If power is positive into a circuit element,
it means that the circuit element is
absorbing power.
 If power is negative into a circuit element,
it means that the circuit element is
supplying power. Only active elements
(sources) can supply power to the rest of a
circuit.
Lecture 12
Active and Passive Elements
   Active elements can generate energy.
   Examples of active elements are independent and
dependent sources.
   Passive elements cannot generate energy.
   Examples of passive elements are resistors,
capacitors, and inductors.
   In a particular circuit, there can be active
elements that absorb power – for example, a
battery being charged.

Lecture 12
Independent and Dependent
Sources
 An independent source (voltage or
current) may be DC (constant) or time-
varying; its value does not depend on other
voltages or currents in the circuit.
 A dependent source has a value that
depends on another voltage or current in the
circuit.

Lecture 12
Independent Sources

vs t           is t 

Voltage Source   Current Source

Lecture 12
Dependent Sources

v=f(vx)             v=f(ix)
+                   +
-                   -

Voltage             Current
Controlled          Controlled
Voltage Source      Voltage Source
(VCVS)              (CCVS)
Lecture 12
Dependent Sources

I=f(Vx)             I=f(Ix)

Voltage             Current
Controlled          Controlled
Current Source      Current Source
(VCCS)              (CCCS)
Lecture 12
Passive Lumped Circuit Elements
   Resistors
R

   Capacitors
C

   Inductors
L

Lecture 12
Topology of Circuits
 A lumped circuit is composed of lumped
elements (sources, resistors, capacitors,
inductors) and conductors (wires).
 All the elements are assumed to be
lumped, i.e., the entire circuit is of
negligible dimensions.
 All conductors are perfect.

Lecture 12
Topology of Circuits
 A schematic diagram is an electrical
representation of a circuit.
 The location of a circuit element in a
schematic may have no relationship to its
physical location.
 We can rearrange the schematic and have
the same circuit as long as the connections
between elements remain the same.
Lecture 12
Topology of Circuits
   Example: Schematic of a circuit:
“Ground”: a
reference point
where the voltage
(or potential) is
assumed to be zero.

Lecture 12
Topology of Circuits
   Only circuit elements that are in closed loops
(i.e., where a current path exists) contribute to
the functionality of a circuit.
This circuit
element can be
removed without
affecting
functionality. This
circuit behaves
identically to the
previous one.

Lecture 12
Topology of Circuits
  A node is an equipotential point in a circuit. It
is a topological concept – in other words, even if
the circuit elements change values, the node
remains an equipotential point.
 To find a node, start at a point in the circuit.
From this point, everywhere you can travel by
moving only along perfect conductors is part of a
single node.

Lecture 12
Topology of Circuits
 A loop is any closed path through a circuit in
which no node is encountered more than once.
 To find a loop, start at a node in the circuit.
From this node, travel along a path back to the
same node ensuring that you do not encounter any
node more than once.
 A mesh is a loop that has no other loops inside
of it.

Lecture 12
Topology of Circuits
  If we know the voltage at every node of a
circuit relative to a reference node (ground),
then we know everything about the circuit –
i.e., we can determine any other voltage or
current in the circuit.
 The same is true if we know every mesh
current.

Lecture 12
Topology of Circuits

N1   N2    N3        N4   • In this example there
are 5 nodes and 2
meshes.
M1        M2
meshes, there is one
N0            (following the outer
perimeter of the circuit).

Lecture 12
Resistors
 A resistor is a circuit element that
dissipates electrical energy (usually as heat).
 Real-world devices that are modeled by
resistors: incandescent light bulb, heating
elements (stoves, heaters, etc.), long wires
 Parasitic resistances: many resistors on
circuit diagrams model unwanted
resistances in transistors, motors, etc.
Lecture 12
Resistors
i(t)

vt   Ri t 
The                +
Rest of        R        v(t)
the
Circuit             -

   Resistance is measured in Ohms (W)
   The relationship between terminal voltage and current
is governed by Ohm’s law
   Ohm’s law tells us that the volt drop in the direction of
assumed current flow is Ri
Lecture 12
KCL and KVL
 Kirchhoff’s Current Law (KCL) and Kirchhoff’s
Voltage Law (KVL) are the fundamental laws of
circuit analysis.
 KCL is the basis of nodal analysis – in which
the unknowns are the voltages at each of the
nodes of the circuit.
 KVL is the basis of mesh analysis – in which
the unknowns are the currents flowing in each of
the meshes of the circuit.
Lecture 12
KCL and KVL
   KCL                                  i1(t)     i5(t)
 The sum of all currents
i2(t)                 i4(t)
entering a node is zero,
or                                       i3(t)

 The sum of currents
n
entering node is equal
to sum of currents          i (t )  0
j 1
j
leaving node.

Lecture 12
KCL and KVL
   KVL
 The sum of voltages          n
around any loop in a      v j 1
j   (t )  0
circuit is zero.

-       + v2(t) -   +
v1(t)                  v3(t)
+                   -

Lecture 12
KCL and KVL
   In KVL:
 A voltage encountered + to - is positive.
 A voltage encountered - to + is negative.

   Arrows are sometimes used to represent voltage
differences; they point from low to high voltage.

+
v(t)   ≡             v(t)
-
Lecture 12
Resistors in Series
 A single loop circuit is one which has only
a single loop.
 The same current flows through each
element of the circuit - the elements are in
series.

Lecture 12
Resistors in Series
Two elements are in series if the current that
flows through one must also flow through
the other.

Series
R1      R2

Lecture 12
Resistors in Series
Consider two resistors in series with a
voltage v(t) across them:
Voltage division:
i(t)
R1
+          +
v1 (t )  v(t )
R1       v1(t)                       R1  R2
-
v(t)                                          R2
+
v2 (t )  v(t )
R2       v2(t)                       R1  R2
-         -
Lecture 12
Resistors in Series
 If we wish to replace the two series
resistors with a single equivalent resistor
whose voltage-current relationship is the
same, the equivalent resistor has a value
given by
Req  R1  R2

Lecture 12
Resistors in Series
 For N resistors in series, the equivalent
resistor has a value given by

R1
R2                  Req
R3

Req  R1  R2  R3    RN
Lecture 12
Resistors in Parallel
   When the terminals of two or more circuit
elements are connected to the same two
nodes, the circuit elements are said to be in
parallel.

Lecture 12
Resistors in Parallel
Consider two resistors in parallel with a
voltage v(t) across them:
Current division:
i(t)
R2
+
i1(t)   i2(t)    i1 (t )  i (t )
R1  R2
v(t)       R1      R2                         R1
i2 (t )  i (t )
R1  R2
-
Lecture 12
Resistors in Parallel
 If we wish to replace the two parallel
resistors with a single equivalent resistor
whose voltage-current relationship is the
same, the equivalent resistor has a value
given by
R1 R2
Req 
R1  R2

Lecture 12
Resistors in Parallel
 For N resistors in parallel, the equivalent
resistor has a value given by

R1   R2   R3                 Req

1
Req 
1   1  1     1
    
R1 R2 R3    RN
Lecture 12
Energy Storage Elements
 Capacitors store energy in an electric field.
 Inductors store energy in a magnetic field.

 Capacitors and inductors are passive
elements:
 Can  store energy supplied by circuit
 Can return stored energy to circuit

 Cannot supply more energy to circuit than is
stored.
Lecture 12
Energy Storage Elements
 Voltages and currents in a circuit without
energy storage elements are solutions to
algebraic equations.
 Voltages and currents in a circuit with
energy storage elements are solutions to
linear, constant coefficient differential
equations.

Lecture 12
Energy Storage Elements
   Electrical engineers (and their software tools)
usually do not solve the differential equations
directly.
 LaPlace transforms
   These techniques covert the solution of
differential equations into algebraic problems.

Lecture 12
Energy Storage Elements
   Energy storage elements model electrical
 Capacitors model computers and other
electronics (power supplies).
 Inductors model motors.
   Capacitors and inductors are used to build
filters and amplifiers with desired frequency
responses.
   Capacitors are used in A/D converters to
hold a sampled signal until it can be
converted into bits.
Lecture 12
Capacitors
   Capacitance occurs when two conductors are separated
by a dielectric (insulator).
   Charge on the two conductors creates an electric field
that stores energy.
   The voltage difference between the two conductors is
proportional to the charge.
qt   C vt 
   The proportionality constant C is called capacitance.
   Capacitance is measured in Farads (F).
Lecture 12
Capacitors
The
+                             dv(t )
rest i(t)
of              v(t)
i (t )  C
the
dt
-
circuit
t
1
v(t )   i ( x)dx
C 
t
1
v(t )  v(t 0 )   i ( x)dx
C t0
Lecture 12
Capacitors
 The voltage across a capacitor cannot
change instantaneously.
 The energy stored in the capacitors is given
by
1 2
wC (t )  Cv (t )
2

Lecture 12
Inductors
   Inductance occurs when current flows through a (real)
conductor.
   The current flowing through the conductor sets up a
magnetic field that is proportional to the current.
   The voltage difference across the conductor is
proportional to the rate of change of the magnetic flux.
   The proportionality constant is called the inductance,
denoted L.
   Inductance is measured in Henrys (H).

Lecture 12
Inductors
The             +
di(t )
rest i(t)                        v(t )  L
of        L       v(t)                    dt
the
-
circuit
t
1
i (t )   v( x)dx
L 
t
1
i (t )  i (t 0 )   v( x)dx
L t0
Lecture 12
Inductors
 The current through an inductor cannot
change instantaneously.
 The energy stored in the inductor is given
by
1 2
wL (t )  Li (t )
2

Lecture 12
Analysis of Circuits Containing
Energy Storage Elements
   Need to determine:
 The  order of the circuit.
 Forced (particular) and natural
(complementary/homogeneous) responses.
 Transient and steady state responses.
 1st order circuits - the time constant.
 2nd order circuits - the natural frequency
and the damping ratio.

Lecture 12
Analysis of Circuits Containing
Energy Storage Elements
   The number and configuration of the energy
storage elements determines the order of the
circuit.
n  # of energy storage elements
   Every voltage and current is the solution to a
differential equation.
   In a circuit of order n, these differential
equations are linear constant coefficient and
have order n.
Lecture 12
Analysis of Circuits Containing
Energy Storage Elements
   Any voltage or current in an nth order
circuit is the solution to a differential
equation of the form
d n v(t )        d n1v(t )
n
 an1      n 1
 ...  a0v(t )  f (t )
dt               dt
as well as initial conditions derived from
the capacitor voltages and inductor
currents at t = 0-.
Lecture 12
Analysis of Circuits Containing
Energy Storage Elements
   The solution to any differential equation consists
of two parts:
v(t) = vp(t) + vc(t)
   Particular (forced) solution is vp(t)
 Response particular to the source

   Complementary/homogeneous (natural)
solution is vc(t)
 Response common to all sources
Lecture 12
Analysis of Circuits Containing
Energy Storage Elements
 The particular solution vp(t) is typically a
weighted sum of f(t) and its first n
derivatives.
 If f(t) is constant, then vp(t) is constant.

 If f(t) is sinusoidal, then vp(t) is sinusoidal.

Lecture 12
Analysis of Circuits Containing
Energy Storage Elements
   The complementary solution is the
solution to
n              n 1
d v(t )         d v(t )
n
 an 1     n 1
 ...  a0v(t )  0
dt              dt

   The complementary solution has the form
n
vc (t )   K i e sit
i 1

Lecture 12
Analysis of Circuits Containing
Energy Storage Elements
 s1through sn are the roots of the
characteristic equation
n 1
s  an1s
n
 ...  a1s  a0  0

Lecture 12
Analysis of Circuits Containing
Energy Storage Elements
 If si is a real root, it corresponds to a
decaying exponential term Ki e s t , si  0  i

 If si is a complex root, there is another
complex root that is its complex conjugate,
and together they correspond to an
exponentially decaying sinusoidal term
e  it  Ai cos  d t  Bi sin  d t 

Lecture 12
Analysis of Circuits Containing
Energy Storage Elements
 The steady state (SS) response of a circuit
is the waveform after a long time has
passed.
 DC SS if response approaches a
constant.
 AC SS if response approaches a sinusoid.
 The transient response is the circuit
response minus the steady state response.
Lecture 12
Analysis of Circuits Containing
Energy Storage Elements
 Transients usually are associated with the
complementary solution.
 The actual form of transients usually
depends on initial capacitor voltages and
inductor currents.
 Steady state responses usually are
associated with the particular solution.
Lecture 12
First-Order Circuits

 Any circuit with a single energy storage
element, an arbitrary number of sources,
and an arbitrary number of resistors is a
circuit of 1st order.
 Any voltage or current in such a circuit is
the solution to a 1st order differential
equation.

Lecture 12
First-Order Circuits

   Examples of 1st order circuits:
 Computer   RAM
 A dynamic RAM stores ones as charge on a
capacitor.
 The charge leaks out through transistors
modeled by large resistances.
 The charge must be periodically refreshed.

Lecture 12
First-Order Circuits
   Examples of 1st order circuits (Cont’d):
 The RC low-pass filter for an envelope detector in a
 Sample-and-hold circuit:
 The capacitor is charged to the voltage of a
waveform to be sampled.
 The capacitor holds this voltage until an A/D
converter can convert it to bits.
 The windings in an electric motor or generator can
be modeled as an RL 1st order circuit.
Lecture 12
First-Order Circuits
vR(t) -
+

R        +
+
vS(t)                  C        vC(t)
-                 -

   1st Order Circuit:
 One capacitor and one resistor
 The source and resistor may be equivalent to a
circuit with many resistors and sources.
Lecture 12
First-Order Circuits
vR(t)
+           -
R          +
+
vS(t)                   C       vC(t)
-                   -
i(t)

   Let’s derive the (1st order) differential
equation for the mesh current i(t).

Lecture 12
First-Order Circuits
KVL around the loop:
vS t   vR t   vC t 
We have
vR t   Ri t 
t
vC t   vC 0   ix dx
1
C0

Lecture 12
First-Order Circuits
The KVL equation becomes:
t
Ri t   vC 0   ix dx  vS t 
1
C0
Differentiating both sides w.r.t. t, we have
dit  1        dvS t 
R        it  
dt    C          dt
or
dit  1           1 dvS t 
    it  
dt     RC         R dt
Lecture 12
First-Order Circuits
iL(t)
iR(t)           +

iS(t)       R           L   v(t)

-

   1st Order Circuit:
 One inductor and one resistor
 The source and resistor may be equivalent to a
circuit with many resistors and sources.
Lecture 12
First-Order Circuits
iL(t)
iR(t)           +

iS(t)      R          L   v(t)

-

   Let’s derive the (1st order) differential
equation for the node voltage v(t).

Lecture 12
First-Order Circuits
KCL at the top node:
iS t   iR t   iL t 
We have
vt 
iR t  
R
t
iL t   iL 0    v x dx
1
L0
Lecture 12
First-Order Circuits
The KVL equation becomes:
vt 
t
 iL 0   vx dx  iS t 
1
R              L0
Differentiating both sides w.r.t. t, we have
1 dvt  1        diS t 
 vt  
R dt     L          dt
or
dvt  R          diS t 
 vt   R
dt    L            dt
Lecture 12
First-Order Circuits
   For all 1st order circuits, the diff. eq. can be
written as       dvt  1
 vt   f t 
dt    
   The complementary solution is given by

vC t   Ke
t


where K is evaluated from the initial conditions.

Lecture 12
First-Order Circuits
   The time constant of the complementary
response is .
 For an RC circuit,  = RC
 For an RL circuit,  = L/R

    is the amount of time necessary for an
exponential to decay to 36.7% of its initial
value.

Lecture 12
First-Order Circuits
   The particular solution vp(t) is usually a
weighted sum of f(t) and its first derivative.
 If f(t) is constant, then vp(t) is constant.
 If f(t) is sinusoidal, then vp(t) is sinusoidal.

Lecture 12

```
To top