06_Lighting_and_Shading by ajizai

VIEWS: 12 PAGES: 28

									         Lighting and Shading


 Light
              Incoming
Source                                          Reflected light
           (Incident) light




                                                 Object
                                                 Surface




                              Refracted light
                            Light Source
Point Light Source

    Light emits from a single point
    in all directions




Parallel (Directional) Light Source

    Light source is at infinity.
    Light rays are parallel lines.                                 V


                                     V:   Light direction vector
Spotlight
  Light emits from a single point. Light rays are confined to a cone.




                                                         V
                               c


         c:      Cut-off angle
         V:       Light direction vector (Cone Axis)

Extended Light Source
    Light source with a finite surface area.
    Can be approximated as multiple point light sources.
Radial Intensity Attenuation
 Light intensity decreases as light travels away from the light source.


 Radial intensity attenuation factor
                                      1
                  f r (d ) 
                               a0  a1d  a2 d 2

        d      Distance from the light source
        a0     Constant attenuation coefficient
        a1     Linear attenuation coefficient
        a2     Quadratic attenuation coefficient

 Radial intensity attenuation only applies to point light and spotlight.
Angular Intensity Attenuation
                                                       R (light ray)

                              
                                                        V (Cone axis)
                              c



  For spotlight, light intensity decreases as the light ray deviates from
  the cone axis.

  Angular intensity attenuation factor
                       cosm  , 0     c
            f a ( )                             cos  R V
                       0,         c
                 Light ray angle from cone axis
        m         Angular intensity attenuation exponent
   Phong Reflection Model




Ambient             Diffuse




Specular            Emissive
Ambient Light

   Ambient Light: Background light that comes from all directions
   and has constant intensity.



                         Oa  ka I a

        Ia       Intensity of incoming ambient light
        Oa       Intensity of reflected ambient light
        ka       Ambient reflectivity of object surface
Diffuse Reflection
   • Incoming light comes from a certain direction.
   • Reflected light is scattered in all directions.
 Incident
                            N
   light
                                            N Unit Surface Normal
                                           L Unit Direction Vector to Light
                 L                           incident angle


                      kd I d ( N  L), if N  L  0
                 Od  
                      0,               if N  L  0
            Id       Intensity of incoming diffuse light
            Od       Intensity of reflected diffuse light
            kd       Diffuse reflectivity of object surface

                 For most materials, kd = ka
Specular Reflection
  • Incoming light comes from a certain direction.
  • Reflected light concentrates around a certain direction.

        Incident
          light                 N
                                            R
                    L                                     Viewer
                                         V




     R Unit Vector in Ideal Specular Reflection Direction
     V Unit Direction Vector to the Viewer

                     R  ( 2 N  L) N  L
Phong Model

           ks I s ( V  R )n , if V  R  0 and N  L  0
      Os  
           0,                  if V  R  0 or N  L  0

       Is         Intensity of incoming specular light
       Os         Intensity of specular reflection light
       ks         Specular reflectivity of object surface
       n          Specular reflection exponent

 Simplified Phong Model
                                   Halfway vector
            N H
                                           LV
                       R             H
                                          LV
  L
                       V
                                    ks I s ( N  H)n , if N  H  0 and N  L  0
                               Os  
                                    0,                 if N  H  0 or N  L  0
n controls the shininess of the surface

             N                                      N
     L                R
                                            L                 R




   Shiny surface (large n)                 Dull surface (small n)
  Small specular highlight                Large specular highlight
Surface Light Emission
   Light emitted by the object itself.             I e  constant

Combine Everything Together

                                                                          
                          nl
    O  I e  ka I a   f rl f al kd I d ( N  L)  k s I sl ( N  H) n
                                        l

                         l 1


                   nl: Number of light sources
Colored Light and Material
  Light Intensity and Material Reflectivity are specified in RGB triples

           I a  ( I aR , I a , I aB ), I d  ( I dR , I d , I dB ), I s  ( I sR , I sG , I sB )
                            G                            G


          ka  ( kaR , ka , kaB ), kd  ( kdR , kd , kdB ), k s  ( k sR , k sG , k sB )
                        G                        G




  Lighting calculation is performed for each RGB component separately

     OaR  k aR I aR               OdR  kdR I dR ( N  L)                OsR  k sR I sR ( N  H) n
     G                             G                                      G
    Oa  k a I a
              G G
                                   Od  kd I d ( N  L)
                                            G G
                                                                           Os  k sG I sG ( N  H ) n
    O B  k B I B                 O B  k B I B ( N  L)                 O B  k B I B ( N  H)n
     a       a a                   d      d d                             s       s s
               Polygon Shading Models
             • Flat shading
             • Smooth shading (Gouraud shading)
             • Phong shading

Flat Shading
   Polygon surface is rendered using a single color.
   The color usually comes from a vertex or polygon centroid under
   certain illumination model.
Smooth Shading (Gouraud shading)
   The color for each vertex of the polygon is calculated under certain
   illumination model. The surface color of the polygon is interpolated
   using the vertices’ colors.




    1. Determine unit normal vector at each vertex.
    2. Calculate the color of each vertex using an illumination model.
    3. Linearly interpolate vertex colors across projected polygon.
Phong Shading
   Interpolate vertex normal vectors instead of vertex colors

   1.   Determine unit normal vector at each vertex.
   2.   Linearly interpolate vertex normals across projected polygon.
   3.   Apply an illumination model and calculate the color of each
        projected pixel using the interpolated normal.



   Advantage of Phong Shading over Smooth Shading:
   • No Mach bands effect (bright and dark intensity streaks)
   • Better specular highlight
Vertex Normal Calculation
  Polygon Surface Normal and Plane Equation
        z        N=(A, B, C)                 Three points on the          P1  ( x1 , y1 , z1 )
                                                                          
                                             polygon surface:             P2  ( x2 , y2 , z 2 )
                          Outside                                         P  ( x , y , z )
                     P1                                                    3      3    3     3
       P2
                                          In right-handed coordinate system, P1, P2, P3
                     P3                   are specified in counter-clockwise direction
                                    y
                                          when viewed from outside to inside
         Inside
  x
                                                                                                     T
      Surface normal:          T  P1P2  P1P3  (P2  P1 )  (P3  P1 )  ( A, B, C )        N
                                                                                                     T
      Plane equation:          T  P  D          or    Ax  By  Cz  D  0
                               D  T  P1  T  P2  T  P3
            1   y1   z1          x1 1 z1                 x1   y1 1                 x1    y1     z1
      A  1 y2       z2     B  x2 1 z 2           C  x2     y2 1         D   x2      y2     z2
            1 y3     z3          x3 1 z3                 x3   y3 1                x3     y3     z3
      if Ax + By + Cz + D < 0, point (x, y, z) is inside.
      if Ax + By + Cz + D > 0, point (x, y, z) is outside.
Averaged Vertex Normal of Polygon Surfaces
                   N2                      Average normal vectors of all
         N1              N                 polygons that share the vertex
                                      N3
                                                   n
                                                                T
                                             T   Ni        N
                   N4                             i 1          T


True Normal of a Curved Surface

    Non-parametric surface equation               f f f 
              f ( x, y, z )  0              T   , ,   f
                                                  x y z 
                                                           
    Parametric surface equation                   P P
              ( x, y, z )  P(u, v)          T     
                                                  u v
         T
    N
         T
                   Lighting in OpenGL
                       Create Light Source

void glLightf(GLenum light, GLenum pname, GLfloat pvalue)
void glLightfv(GLenum light, GLenum pname, GLfloat *pvalue)
Create a light source
light:     Light source identifier.
           Values are GL_LIGHTi, (i = 0, 1, 2, … , 7)
pname: Parameter name
pvalue: Parameter value

To enable a light source, use glEnable(GL_LIGHTi);
To disable a light source, use glDisable(GL_LIGHTi);
To enable lighting calculation, use glEnable(GL_LIGHTING);
To disable lighting calculation, use glDisable(GL_LIGHTING);
Parameter name             Parameter value Meaning
GL_AMBIENT                 (Ra, Ga, Ba, Aa)   ambient intensity
GL_DIFFUSE                 (Rd, Gd, Bd, Ad)   diffuse intensity
GL_SPECULAR                (Rs, Gs, Bs, As)   specular intensity
GL_POSITION                (x, y, z, h)       light source position
                                              h=0 indicates parallel
                                              light source
GL_SPOT_DIRECTION          (x, y, z)          spotlight direction
GL_SPOT_CUTOFF             c                 spotlight cutoff angle
                                              (in degree)
GL_SPOT_EXPONENT           m                  spotlight exponent
GL_CONSTANT_ATTENUATION    a0                 constant attenuation
                                              coefficient
GL_LINEAR_ATTENUATION      a1                 linear attenuation
                                              coefficient
GL_QUADRATIC_ATTENUATION   a2                 quadratic attenuation
                                              coefficient
The light source position specified by GL_POSITION is transformed by
current Modelview matrix and stored in eye coordinates.



      To make a light source               To make a light source
   relatively fixed to the viewer       relatively fixed to the scene
    Specify light source position         Viewing Transformation


      Viewing Transformation            Specify light source position


     Modeling Transformation              Modeling Transformation
              Define Surface Material Properties

void glMaterialf(GLenum face, GLenum pname, GLfloat pvalue)
void glMaterialfv(GLenum face, GLenum pname, GLfloat *pvalue)
face:   Indicates which face the material properties are applied to.
        GL_FRONT, GL_BACK, GL_FRONT_AND_BACK

pname                              pvalue               Meaning
GL_AMBIENT                         (Ra, Ga, Ba, Aa)     ambient reflectivity
GL_DIFFUSE                         (Rd, Gd, Bd, Ad)     diffuse reflectivity
GL_SPECULAR                        (Rs, Gs, Bs, As)     specular reflectivity
GL_AMBIENT_AND_DIFFUSE (Rad, Gad, Bad, Aad) ambient and diffuse
                                            reflectivity
GL_EMISSION                        (Re, Ge, Be, Ae)     emissive color
GL_SHININESS                       0  n  128          Specular reflection
                                                        exponent
                  Use Color Material Mode

void glColorMaterial( GLenum face, GLenum mode)
Cause material property specified by mode of polygon faces specified
by face to track current color specified by glColor*() command.
face: GL_FRONT, GL_BACK, GL_FRONT_AND_BACK
mode: GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR,
      GL_AMBIENT_AND_DIFFUSE, GL_EMISSION

To enable color material mode,
use glEnable(GL_COLOR_MATERIAL);
To disable color material mode,
use glDisable(GL_COLOR_MATERIAL);
                       Select Lighting Model

void glLightModel{if}(GLenum pname, TYPE pvalue)
void glLightModel{if}v(GLenum pname, TYPE *pvalue)

Global Ambient Light
  pname = GL_LIGHT_MODEL_AMBIENT
  pvalue = (R, G, B, A)
  Defines global ambient light intensity that is not from any
  particular light source. Default value is (0.2, 0.2, 0.2, 1.0)

Two-Sided Lighting
  pname = GL_LIGHT_MODEL_TWO_SIDE
  pvalue = GL_FALSE  One-sided lighting. Only perform lighting
                     calculation on front faces. (default)
  pvalue = GL_TRUE   Two-sided lighting. Perform lighting
                     calculation on both front and back faces
Local or Infinite Viewpoint
  pname = GL_LIGHT_MODEL_LOCAL_VIEWER
  pvalue = GL_FALSE           Infinite viewpoint (default)
  pvalue = GL_TRUE            Local viewpoint
  This parameter affects how direction to viewer vector V is calculated
  for specular reflection.
  For infinite viewpoint, V is a constant (0, 0, 1) in eye coordinates.
  For local viewpoint, the viewpoint is placed at the origin in eye
  coordinates and V is different for each vertex.

Secondary Specular Color (Added in OpenGL 1.2. Need glext.h header)
  pname = GL_LIGHT_MODEL_COLOR_CONTROL
  pvalue = GL_SINGLE_COLOR
      Specular color is added to ambient, diffuse and emissive colors
      before texture mapping. (default)
  pvalue = GL_SEPARATE_SPECULAR_COLOR
      Specular color is calculated separately and added after texture
      mapping.
                Select shading model


void glShadeModel(Glenum mode)
mode:
  GL_FLAT           Flat shading
  GL_SMOOTH         Smooth shading (Gouraud shading)
                     Specify Vertex Normal

void glNormal3{bsifd}(TYPE x, TYPE y , TYPE z)
void glNormal3{bsifd}v(TYPE * v)
Specify current normal vector

• Current normal vector is considered an OpenGL state variable.
  Therefore the normal vector of a vertex should be specified before its
  coordinates.
• Normal vector should be unit vector. By default, OpenGL does not
  automatically normalize a normal vector. To enable automatically
  normalization, use glEnable(GL_NORMALIZE).
Use glNormal*() in primitive rendering

       glBegin(mode);
          glNormal*(N0);
          glVertex*(V0);
          glNormal*(N1);
          glVertex*(V1);
          ...
          glNormal*(Nn1);
          glVertex*(Vn1);
       glEnd();

								
To top