Docstoc

袪褝谢械泻oveview.ppt

Document Sample
袪褝谢械泻oveview.ppt Powered By Docstoc
					        RELEC
        project

(Relativistic ELECtrons)
    MICROSATELLITE KARAT FOR PLANETARY MISSIONS,
      ASTROPHYSICAL AND GEOPHYSICAL RESEARCH




2
    UNIFICATED SPACECRFAFT KARAT WITH PAYLOAD




                              Spacecraft mass on the
                                  orbit – 110 kg


                               Three-axes orientation
                             Active operational time of a
                              mission no lesss than 3
                                        years




3
    VIBRO-DYNAMIC TESTS




4
5
    TEST ‘S FACILITY




6
     BASIC PRINCIPLES OF UNIVERSAL SPACECRAFT KARAT
                       ELABORATION

    • already tested and elaborated Russian on-board systems, instruments,
    modules and units are used;
    • design and interfaces are made in accordance wuth international
    standards;
    • module construction of small spacecraft;
    • on-board systems formed the spacecraft are also unificated.
           Spacecraft mass is about 100 kg

           Stabilisation accuracy - 4 ×10-3 degree/s

           Orientation accuracy - 10·solid min

           Time of active operations 3 year

           On-board memory volume - no less than 8 GByte
           Scientific data transfer with the use of S-LINEwill done of ciast th wjПередача
           научной информации по радиолинии S- или X–диапазона

7          Spacecraft ative is actyve 3aода
    EXPERIMENT RELEC ON-NOARD KARAT MISSION




                                  Goal of experiments:

                               • study of cosmic ray and
                               magnetosphere energetic
                               particle acting on the upper
                               Atmosphere
                               •study of atmosphere
                               transient luminous effects.




8
                                       Mission control and data receiving will be
                                          provide be the Mission Control
                                          Centre     of     Lavochkin     space
                                          corporation as well as the compact
                                          ground receivers.
                                       Ground receivers with antenna diameter 3,7 and 5 m




    Unified platform “Karat” for small spacecraft
9
            Group launching           Special mission



    Rokot            Dnepr    Soyuz           Start-M




            By-pass mission



1
              History of the problem



 Discovery of electron radiation belts
  onboard ELECTRON satellites in 60’s.
 MAXIS (1996) experiment onboard balloons,
  Kiruna. High-energy electrons >500 keV
  precipitations:
  Flux - 5 х 1025 particles for eight days was
  detected at low altitudes .
  Total number of trapped electrons –
                                         2 х 1025.
 12345678



The X-rays (produced from ~1.7 MeV electrons) measurements
showed that there are two main types of precipitation – long-term
(~100 s) and short enhancements (~10 s) modulating the count
rate. MAXIS measurements.
Precipitation of ~100 keV electrons from radiation belts measured
in SAMPEX experiment.
Scientific objectives

Magnetosphere relativistic electron
acceleration and precipitation research.
Study of high-energy particle acting on the
upper Atmosphere and ionosphere.
Search of transient phenomena in possible
connection with energetic particle interactions
in the Atmosphere
Study of acceleration processes in the
Atmosphere as the possible source of high
energy magnetosphere electrons
Crucial demands
 Simultaneous observations of energetic
  electron & proton flux and low-frequency
  electromagnetic wave intensity variations
  with high temporal resolution.
 Fine time structure measurements of
  transient lightning events in optics, UV, X-
  and gamma rays.
 Monitor detection of charge and neutral
  background particles in different areas of
  near-Earth space.
Demands to the instruments

 electron detectors: wide energy range (~0.1-10.0 MeV),
  temporal resolution ~1 ms, pitch-angle distribution
  measuring, wide dynamical range (from ~0.1 up to
  105 part./cm2s).
 Low-frequency analyzer: measuring of two field
  components at least, frequency bands ~0.1-10 kHz.
 X- and gamma-ray detectors: temporal resolution
  ~1 mcs, sensitivity ~10-8 erg/cm2 for burst.
 Additional: detecting of protons with energies > 1 MeV,
  wide-field observe of Atmosphere in optics, UV, X- and
  gamma-rays with possibility of imagination in optics.
Instruments
 DRG-1 & DRG-2 - two identical detectors of X-, gamma-
  rays and high-energy electrons of high temporal
  resolution and sensitivity
 DRG-3 - three axe directed detectors of energetic
  electrons and protons
 Telescope-T - optical imager
 DUF - UV detector
 NChA - low-frequency analyser
 RChA - radio-frequency analyser
 DOSTEL - dosimeter module
 BE - module of commands and data collection
     DRG-1 (DRG-2) instrument
Two identical NaI(Tl)/CsI(Tl)/plastic scintillator phosvich
detectors, both directed toward the Earth
Physical parameters:
               X- and gamma-quanta             electrons
energy range         0.01-2.0 MeV,             0.2-10.0 MeV
effective area       ~200 cm2         ~200 cm2sr (geom. factor)
                     (total ~800 cm2)
temporal resolution 0.1 mcs                    1.0 ms
sensitivity          ~5·10-9 erg/cm2    ~10-1 part./cm2s
     Technical parameters
     Mass - < 7 kg;
     sizes 300270200 mm;
     power expenditure at 28 V no more 10 W.
             DRG-3 instrument
Three identical NaI(Tl)/CsI(Tl)/plastic scintillator
phosvich detectors, directed along three axe mutually
normal (as Cartesian coordinate system)
Physical parameters:
                    electrons                 protons
energy range        0.1-10.0 MeV,             1.0-100.0 MeV
geom. factor        ~2 cm2sr                  ~2 cm2sr
temporal resolution 1.0 ms                    1.0 ms
sensitivity         ~10 part./cm2s            ~10 part./cm2s
     Technical parameters
     Mass - < 4 kg;
     sizes 250250250 mm;
     power expenditure at 28 V no more 6 W.
Scintillation detectors


   To the sky




                          Along the geomagnetic
                          field line
        Telesope -T instrument
Optical imager based on multi-grain mirror
Physical parameters:


  Spectral band: 300-400 nm     Technical parameters
  Angle resolution: 0.4o.       Mass - < 5 kg;
  Angle of view: 7.5o.
  Cells number: 4000.           sizes 200200400 mm;
  Photomultiplier channels      power expenditure at 28
  number: 64.                   V no more 6 W.
  Time resolution: 100 s.
  Amplitude range: 105.
               DUF instrument
Two photomultiplier tubes with different input window
filters
Physical parameters:
  Spectral band:
    PMT1 -         300-400 nm
    PMT2 (red) - 630-800 nm
  Angle of view: 7.5o .       Technical parameters
  Time resolution: 100 s.     Mass - < 1 kg;
  Amplitude range: 106.         sizes 14014080 mm;
                                power expenditure at 28 V
                                no more 1 W.
PMT1

PMT2
               NChA instrument
 Low-frequency analyzer: two magnetic field component
 meters, two electric field component meters and
 analyzer unit
 Physical parameters:

Frequency band: 20 Hz - 20 kHz
number of spectral components:
                                 Technical parameters
1024
                                 Mass - < 3 kg;
frequency step: 20 Hz .
Time resolution: 2 s.           sizes 16013080 mm;
Number of spectral component     power expenditure at 28 V
categories: 16.                  no more 5 W.
magnetic and electric field component meters
                                                                    ИМ


                                                                                         КВЗ2

                                                45 ZИМ
             КВЗ1
                                 1,5 м
                                                                                       ZКВЗ2

                                                            XКВЗ2
                 ZКВЗ1
                                         90
                                                   90
                                                                          YКВЗ2


             Z           XКВЗ1                        45
                                 YКВЗ1
                                                                         0,4 м (max)




                                                                                        VКА

                         Y


                                                                              Z
                    Метки
            X

         Ориентация осей КВЗ                        Ориентация оси Z ИМ


        Оси ZИМ, ZКВЗ1 и ZКВЗ2 должны быть взаимно ортогональны, причем:
        1 Оси XКВЗ1, ZКВЗ1, XКВЗ2 и ZКВЗ2 лежат в одной плоскости, которая наклонена к вектору
          скорости VКА на 45.
        2 Оси ZИМ, YКВЗ1 и YКВЗ2 коллинеарны и перпендикулярны к плоскости осей XКВЗ1, ZКВЗ1,
          XКВЗ2 и ZКВЗ2 (45 с направлением вектора скорости спутника VКА).
        3 Оси XКВЗ1 и XКВЗ2 перпендикулярны между собой.
            RChA instrument
Radio frequency analyzer
Physical parameters:




                           Technical parameters
                           Mass - < 1 kg;
                           sizes 10010050 mm;
                           power expenditure at 28 V
                           no more 5 W.
          DOSTEL instrument
Dosimetry unit




                     Technical parameters
                     Mass - < 1 kg;
                     sizes 1008070 mm;
                     power expenditure at 28 V
                     no more 1 W.
                   BE instrument
Physical parameters:


  Total data transfer: 500
  Mbyte per day.
  Number of control
  commands : 24.                     Technical parameters
  Number of digital                  Mass - < 4 kg;
  commands: 256 categories.          sizes 270250200 mm;
  Possibility of flexible trigger.   power expenditure at 28 V
                                     no more 4 W.
Ranges of particles and quanta measuring in RELEC experiment

 Electrons            0.2 – 10 MeV
                      > 10 MeV
                      > 0.3 MeV
 Protons              0.3 – 60 MeV
                      > 50 MeV
                      3 – 150 MeV
                      >150 MeV
 Gamma                0.05 – 1.0 MeV
 Neutron              0.1 – 30 MeV
 X-rays               10 – 100 keV
 UV                   300-400 nm
        TOTAL RELEC characteristics

Mass              45 kg.

Power             60 W.

Data flow         500 MB/day.
                  Operational modes
- background mode:
provides 100% covering of the orbit with given time resolution < 1 second for
ex.

no more than 20 MBytes/day


- event mode:
provides a few (3-5) time intervals per orbit with fine (<1 mks) time resolution
initialized by trigger

about 50 MByte on event

four groups of instruments:

- DRGE-1, NChA

- DRGE-1(2), DUF, Telescope-T, RchA

- BChK, DOSTEL – only background mode

- BE – provides other instruments


Total – about 500 MByte/day
                                           Trigger conditions:
  1) Intrinsic trigger:
a) Given signal level;
b) Intensity on the given time interval;
c) Given signal level & intensity on the given time interval (a&b);
d) Coincidence of internal and external (from chosen other instrument) strobes.


  2) External trigger:
a) Data fixation in the given time interval by the trigger signal from chosen other instrument.
b) Data fixation in the given time interval in the case of trigger of event


   3)Trigger of event:
   coincidence of intrinsic triggers from two or more instruments
                                                  В ремя з ап ис и в кол ь ц ев у ю                            В ремя з ап ис и в кол ь ц ев у ю
                                                  п а м я т ь п о с л е т р и г ге р а t 1 g                      п а м я т ь д о т р и г ге р а t1 g


              15            5                                   15            5                         15             5

РГД


               20 мс
       100 мс д л я Д У Ф

ДУФ

                     В рем я з ап ис и в кол ь ц ев у ю
                         памят ь д о т риггера
                                 t1 r= 1 м с
РЧ А


                                                                                     БНД
                                                                                  вы д ает Т К
                                                                                      для
                                                                                  ф и кс а ц и и
                                                                                    инф в
                                 С т р о б п о т р и гг е р у                     приб орах
                                        t1 g = 1 0 м с                                                                                  С т роб по т риггеру
                                         С т роб по т риггеру                                                                                 t 1 r= 3 м с
                                               t1r = 3 м с
БН Д




          С т роб ы не с овпал и ,                                                                  С т роб ы с овпал и , но
                                                      С т роб ы с овпал и , РЧА
         с об ы т ия не з апис аны                                                                 с об ы т ия не з апис аны
                                                         не м ожет з апис ат ь
                                                      с об ы т ие. З начит над о
                                                       и н ф о р м а ц и ю в F IF O
                                                        Р ЧА у д ерживат ь на
                                                         время с т роб а РЧ А
  Other geophysical and space-
 physics problems can be solved
     using the same devices
 Lithosphere-ionosphere connections
  (earthquakes)
 Atmosphere-ionosphere connections
  (thunderstorms)

       Technical applications
 Dosimetry and SEU (single event upsets)
  problem taking into account neutron
  component of radiation.
                                          Timetable
№                             Name                             Beginning
                                                                  End
                                                              (month, year)
 1        Elaboration of Proposal on scientific payload        March 2008
                                                              December 2008
 2       Elaboration of documentation and test models         December 2008
                   Manufacturing of models
                                                              December 2009
3.1.   Manufacturing of engineering model (EM), tests of      December 2009
                             EM.
                                                               March 2010
3.2.   Manufacturing of test facility, complex tests of EM.   December 2009
                 Correction of documentation.
                                                               March 2010
4.1.              Manufacturing of flight example              March 2010
                                                               Маy 2010
4.2.    Manufacturing of test facility for flying example.     March 2010
                                                               Маy 2010
5.          Complex tests of flight example. Preparing of       June 2010
                             launching.                       December 2010

				
DOCUMENT INFO
Shared By:
Categories:
Tags:
Stats:
views:25
posted:12/4/2011
language:English
pages:42
liamei12345 liamei12345 http://
About