Docstoc

nspotr_BCU_sensor_data

Document Sample
nspotr_BCU_sensor_data Powered By Docstoc
					                      Summary of BCU Sensor Data Range and Calibration Parameters

  References: nspotr_BCU-test_BI.doc nspotr_BCU-test.doc nspotr_BCU_operation_Manual_to_RU.doc
              nspotr_BCU_Cmd.doc nspotr_bcu_DataFmt.doc nspotr_bcu_elec_connect.doc

Affirmed on 5 January , 2008, revised 12 January, 03 July , 2009 , 20110529



by Prof. T.L. Yeh, Co-PI, Engineering,                                             , 2008

Approved on         , 2008



By Prof. H.C. Yeh, PI,                                                   , 2008

> From: dalex@jupiter.ss.ncu.edu.tw Mon, 22 Dec 2008 18:29:34 +0800
> The BCU is only the payload, which did not pass the final functional test at the factory.
>TA: 1. Numerical values and dynamic ranges of variations of the BCU parameters;
>TA: 2. Key numbers of calibration of the BCU sensors;
>TA: 3. Calibration graphs for each sensor

** tly: Please do send us any data log from BCU for examination.
** tly: Please let me know what is the difficulty the Russian Team encounters in making judgement on the
    functionality of BCU.
** tly: Let me have / see what they get.

** tly: we can always provide more info to assist, Please Do Show Me A Sample of What You Need.
>tly:?!? > alex: Prof. Yeh can not add any more.
>tly: To run BCU test through BI, check this manual nspotr_BCU-test_BI97b11.doc
> alex: nspotr_BCU_operation_Manual_to_RU_morphous080413tly429.doc - that is completed
    Operation Manual (инструкция по эксплуатации). The description of functional tests is presented in
    Section 2.3.3.2.1 Concise Workability Check (for the Russian Team)
> alex: nspotr_BCU-test97b10.doc - that is manual for functional test.

---- rev 20110529 Subject: nspotr mrm std 畫圖
To: nspotr_papermvmc, nspotr_ss, nspotr_sso
Bcc: edupaper, edupapersh, edupaperother, family0, family0_, familyc0
major revision: for your information nspotr_bcu_sensor_data.doc
http://mvmc.me.ncu.edu.tw/nspotr/nspotr_bcu_sensor_data.doc


I. INTRODUCTION

The sensor data from the flight unit BCU are generated by its BCU Main Board labeled with "BCU V1.1,
   ETP V1.0, and MRM V1.3".

Ref: nspotr_bcu_DataFmt.doc
nspotr_BCU_sensor_data.doc       1                   97c29 tly c31 98112 211 703 99202 03:29@TW 20110505 0529
1) Each Sequence of Sampling Data Contains 15 words: {Sequence Type and Calendar Info in 2 words, 3
   pairs of VTEL (ETP-OUT) and VF of 1 word each for the 3 ETP phases, 2 sets of 3 axes MRM data of 1
   word each after set and reset pulse, and 1 word of VOUT1_T1 of TMP36 data}.

2) Each Sequence of System Data Contains 9 words: {Sequence Type and Calendar Info in 2 words ,             1
   word of system parameters, and 6 TMP36 data of 1 word each}

Sensor data, namely {VTEL (i.e. ETP-OUT), VF, MRM-x-set, MRM-y-set, MRM-z-set, MRM-x-reset,
  MRM-y-reset, MRM-z-reset, TEMP1, TEMP2, TEMP3, TEMP4, TEMP5, TEMP6}, are represented in
  signed 16 bit integer with value range in [–32768, +32767] representing analog signal of [0, 2] volt. All
  signals are scaled and offset to fit in this range. The ADC has 14 bit resolution and the ADC result is left
  justified in the 16 bit data word.

ADC channel 0 to 7 corresponding to data MRM-x, MRM-y, MRM-z, VTEL, Temp1 or 2, Temp3 or 4,
 Temp5 or 6, and VF respectively. Temp1 3 5 and Temp2 4 6 are multiplexed by 0 and 1 on ADC channel 4,
 5, 6. However, in the flight unit, TMP36 sensors #1 #3 #4 and #2 #5 #6 are connected to Temp 1 3 5 and 2
 4 6 locations instead. Ref: Fig 1.a 1.b and 2.c in nspotr_bcu_elec_connect.doc

II. CALIBRATION PARAMETERS of THE SENSORS

II.1 ETP-OUT VTEL and ETP-VF:

The flight data of ETP produces ETP-OUT VTEL and ETP-VF in volt. Post data processing incorporating
  other orbital information is necessary to obtain accurate Electron Temperature Data. Therefore, in this
  document we provide only calibration curve to convert ADC data to voltage difference between the sine
  wave driven probe ETP#1 and the reference probe ETP#2 as ETP-OUT VTEL, and the voltage at the
  reference probe as ETP-VF. (Ref: )

1) Calibration Curve to Obtain ETP-VF Voltage from A7T0 Data:
(Note: The A7T0 data may vary over the full range of a singed 16bit integer [-32768, +32767].)LSE
  parameters obtained by merging both data sensrep976192316A7T0.txt and sensrep976261909A7T0.txt :
VF = (data_A7T0 + 23260 ) / 13816 +-0.0411




nspotr_BCU_sensor_data.doc        2                   97c29 tly c31 98112 211 703 99202 03:29@TW 20110505 0529
Ref: [sensrep976261909A7T0.txt note0712.txt   Ref: [sensrep976192316A7T0.txt
  a7261909.m],                                  a7192316.m],
VF = (data_A7T0 + (22886 ) ) / (13602) +-0.03 VF = (data_A7T0 + (23474) ) / (13942) +-0.0407




2) Effect of Common Mode Voltage of ETP#1 and ETP#2 on ETP-OUT VTEL A3T0 Data:

Ref: [sensrep976191503A3T0.txt a3191503.m],
(data_A3T0 + l5022 +-591.05 ) = (-24.4872) * VTEL_VF_Comm


nspotr_BCU_sensor_data.doc   3               97c29 tly c31 98112 211 703 99202 03:29@TW 20110505 0529
3) Calibration Curve to Obtain ETP-OUT VTEL Voltage Difference from A3T0 Data:
The voltage difference between the two ETP probes (ETP#1_VTEL – ETP#2_VF) due to induced electron
  current flowing into ETP#1 of input impedence (110M +-1%) ohm is estimated by the following
  regression formula:
(Note: The A3T0 data may vary over the full range of a singed 16bit integer [-32768, +32767].)
Ref: [sensrep976191513A3T0.txt a3191513.m],
(VTEL-VF) = (data_A3T0 - ((VTEL+VF)/2)*(-24.4872) + 14873 ) / (-136340) +-0.0041




nspotr_BCU_sensor_data.doc    4                97c29 tly c31 98112 211 703 99202 03:29@TW 20110505 0529
In summary, evaluating VTEL@ETP#1, VF@ETP#2, and the difference dV=(ETP#1-ETP#2):
 a) VF =0.7238e-4*data_A7T0 +1.684 +-0.041,
 b) VTEL = 0.7237e-4*data_A7T0 -0.7334e-5*data_A3T0 +1.574 +-0.045,
 c) dV@(110M +-1%) ohm = -0.1300e-7*data_A7T0 -0.7334e-5*data_A3T0 -0.1094 +-0.0041
note 99202: VTEL dV -0.35~0.13V @110Mohm 增益-0.73e-5V/count 偏移-14900 標準差 0.004V,
     VF –0.68~4.05V 增益 0.72e-4V/count 偏移-23300 標準差 0.04V, by
     “solve({dv=-0.1300e-7*data_A7T0 -0.7334e-5*data_A3T0 -0.1094,VF=0,VF=0.7238e-4*data_A7T0
     +1.684,data_A3T0=-32767},{dv,data_A7T0,data_A3T0,VF});”

Ref: BCU_V11_ckt_pic\DSP_MRM_ETP_V11\ETP\PreAmp\ Pre_amp_input.gif .jpg
     BCU_V11_ETP_PreAmp.jpg, mvmc-nspotr\nspotr_BCU_sensor_data.mws




  rev 20110505 Note for 3) Calibration Curve to Obtain ETP-OUT VTEL Voltage Difference from A3T0
    Data : deriving etemp from Vtel and VF:
  * Vtel is driven by carrier since wave voltage signal in 3 phases sequentially of 0.15 sec width each: #1
    1Vpp 0.5Vpp and 0Vpp. In each phase induced electron current flow into ETP#1 and the input
    resistance 100Mohm +-1% to generate differential voltage. It is filtered and measured as the averaged
    offset to reflect the electron current in response to the driving voltage dV1 dV2 dV3: (dV1-dV3),
    (dV2-dV3), and ratio (dV1-dV3)/(dV2-dV3) can all be used to calculate etemp. If the electron energy
    distribution is Maxwellian, their results should be consistent.
  = phases timing of BCU-Tatiana2: ... %old nspotr98b24rep\nspotr98b24rep.ppt , nspotr99531TripRuSatBCU.vsd
     _timing.gif , nspotr96727rep.vsd , nspotr-asc\OverallSampleTiming.vsd ...lefteye080820tly.gif
  = vTel changes after the switching of carrier amplitude at each phase
    D:\temp\mvmc\mvmc-nspotr\morphous\Test_Calibration\ETP_Test_Result\100M_10M\
    { TEL_OUT.jpg (1st_Phase_1Vpp.JPG, 2nd_Phase_05Vpp.JPG, 3rd_Phase_0Vpp.JPG) VF.JPG}
  = data analysis program by Dr Kakinami: etemp {te1 te2 teR} are calculated based on {Vfa1 =
    ETP3dv-ETP2dv; % 0.25 V , Vfa2 = ETP3dv-ETP1dv; % 0.5 V , R = Vfa2./Vfa1; } ; ref: calTeB.m in
    http://mvmc.me.ncu.edu.tw/nspotr/science/nspotr99504scienceDataCleanKakinami/nspotr99504tatiana_
    data_programsKakinami.zip
    D:\temp\mvmc\mvmc-nspotr\nspotr98a19TereshkovKaluga\orbit-jhk482001\nspotr99504tatiana_data_p
nspotr_BCU_sensor_data.doc            5                     97c29 tly c31 98112 211 703 99202 03:29@TW 20110505 0529
    rogramsKakinami.zip ; ref: http://mvmc.me.ncu.edu.tw/nspotr/kakinami_diry.htm
    d:\temp\mvmc\mvmc-nspotr/kakinami_diry.htm
  = sample BCU-Tatiana2 in-flight data: VF1 VF2 VF3 Vtel1 Vtel2 Vtel3 dV1 dV2 dV3 MRMx y z
    http://mvmc.me.ncu.edu.tw/nspotr/orbit-jhk482001/bcu2009-12-20_10-55-54-113b000latlonPhys12190
    8-12ut.gif
    D:\temp\mvmc\mvmc-nspotr\nspotr98a19TereshkovKaluga\orbit-jhk482001\bcu2009-12-20_10-55-54-
    113b000latlonPhys121908-12ut.gif
  = sample BCU-Tatiana2 in-flight data: dV1 dV2 dV3 and etmp1 etemp2 etemp_ratio calculated by Dr
    Kakinami
    http://mvmc.me.ncu.edu.tw/nspotr/orbit-jhk482001/bcu2009-12-20_10-55-54-113b000ETPtempk12190
    8-12ut99126kakinamitly.gif
    D:\temp\mvmc\mvmc-nspotr\nspotr98a19TereshkovKaluga\orbit-jhk482001\bcu2009-12-20_10-55-54-
    113b000ETPtempk121908-12ut99126kakinamitly.gif

II.2 MRM:
The magnetic field (flux density) component along an MR sensing element is measured by the difference
   between the sensor read out after the set pulse and that after the reset pulse applied to the sensor, e.g.
   (MRMx_Set – MRMx_Reset). The middle point between the two read outs is not necessarily zero. If either
   read out became close to the boundary of the ADC dynamic range, saturation occurs. The difference did no
   longer reflect the magnitude of the magnetic component due to saturation.
(Note: The A0T0, A1T0, and A2T0 data may vary over the full range of a singed 16bit integer [-32768,
   +32767].)
The MRM-x, MRM-y, and MRM-z correspond to the ADC channel A0T0, A1T0, and A2T0 of BCU
   respectively.
The MRM sensing elements have functional dynamic range of +- 2 Gauss.
The orientation of the three MRM sensing elements on the BCU Main Board with respect to the BCU box is
   described in "Fig 1.b The Assembling and the Coordinate System of BCU – Perspective View" (Ref:
   NCU_IF1_0.doc nspotr_BCU_assemble.vsd .gif) of nspotr_bcu_elec_connect97501.doc .




nspotr_BCU_sensor_data.doc       6                  97c29 tly c31 98112 211 703 99202 03:29@TW 20110505 0529
Calibration Function of MRM:
The calibration curve of the MRM on the flight unit BCU V1.1A is described below (Ref:
  BCU_MRCali_NSPO_071210_測試結果\V11A_RESULT\total\MRM_analysis11a.m
  nspoMRcalib\nspoMRcalib071210\bcu_v11a_mrm_cali.doc).
Magnetic field components in nT along the 3 BCU axes shown in the lower left corner of the figure above
  can be obtained by data from the three MRM sensor components on the BCU main board. The calibration
  function makes use of the difference between the data after set and reset pulse on each MRM sensing
  element. MRM_x, y, z data is obtained from ADC channel 0, 1, 2 respectively.
rev 20110529: The following calibration was obtained by comparing the averaged sensor raw data
  counts with the magnetic field setting of the Helmholtz coil. For each test field value there are large
  number of data measured and averaged, therefore, this calibration has minimum std representing
  the linearity deviation over the full testing range [-0.5,+0.5]*1e5nT. Thus, the nominal linearity error
  in this dynamic range is +-0.026%.
     X           -1.8477 -0.0294       -0.0676                (Xset –         -877.4915        25
                                                              Xreset)
B_ Y       =     +0.0240 -1.9008       -0.0149 * data_ (Yset – Yreset) + -426.0594 +-std 26 nT
     Z           -0.1145 +0.0248 +1.8770                  (Zset – Zreset)     +493.3449        23

rev 20110529 Note: 你發現的 "原來 mophies 作的 std 是 把 在太空中心測試時 同一環境磁場下
  所有的數據 作成一個平均值 (其 N->inf, var(mean)->0)
    再把 在所有測試條件下的 量測平均值與 設定磁場值 之間的 誤差 所做的 std 26nT
     " 因此 是代表了 整個測試範圍內的
  linearity deviation -> 因此是 線性度的量測: 線性度的比例值
     會是 這個 std 26nT / 全測試域的範圍 (+0.5 - (-0.5))*e5nT
    而 這個 26nT 不是 單一量測數據的 std - 精度,
----
作者 pondaniel (NICE~~彭彭!!!) Fri May 27 16:31:56 2011 看板 G_MVMC
  標題 [討論] nspotr 台俄校正數據
02_計畫相關資料\060401_NSPO_台俄衛星\nspotr\20110527_test_calibrated_data\total
1. 先 run      mrm_analysis11a.m
    會把所需要的 raw data 放到 matlab
2. 再 run test_gg.m
     會把 raw data 拿來運算




nspotr_BCU_sensor_data.doc      7                 97c29 tly c31 98112 211 703 99202 03:29@TW 20110505 0529
                                                   5
                                                x 10                 Obtain Mag Field Components from X data count
                                         1.5




                                           1




                                         0.5
        nT in BCU x-blue y-green z-red




                                           0




                                         -0.5




                                           -1




                                         -1.5
                                             -8        -6       -4            -2           0             2           4     6             8
                                                                                data MRMx(Set - Reset)                                4
                                                                                                                                  x 10



                                                   5
                                                x 10                 Obtain Mag Field Components from Y data count
                                         1.5




                                           1




                                         0.5
        nT in BCU x-blue y-green z-red




                                           0




                                         -0.5




                                           -1




                                         -1.5
                                             -8        -6       -4            -2           0             2           4     6             8
                                                                                data MRMy(Set - Reset)                                4
                                                                                                                                  x 10



                                                   5
                                                x 10                 Obtain Mag Field Components from Z data count
                                         1.5




                                           1




                                         0.5
        nT in BCU x-blue y-green z-red




                                           0




                                         -0.5




                                           -1




                                         -1.5
                                             -8        -6       -4            -2           0             2           4     6             8
                                                                                data MRMz(Set - Reset)                                4
                                                                                                                                  x 10



rev 20110529 Note: 單一量測數據的 std - 精度,

nspotr_BCU_sensor_data.doc                                  8                         97c29 tly c31 98112 211 703 99202 03:29@TW 20110505 0529
     這個值應該是你用 每個數據與校正值 的差異 做出來的 std
      或者是 你用 所有數據作 calibration matrix LSE 得到的
       所有 residual 的 std 105.3 120.5 141.0 nT for x y z axis)
?...TBD...?
To: nspotr_papermvmc { 953403027@cc.ncu.edu.tw sbjiang@viewmove.com tlyeh@cc.ncu.edu.tw
   mophies088@gmail.com}
Subject: nspotr mrm std 畫圖
!! 請把 用所有原始數據 做出來的 整個 calibration matrix LSE 的結果的
       校正 矩陣公式 與 std 估算值 都給我 以便完整納入 校正紀錄中
  (格式請參考 原來用 一個平均值得到的:
     nspotr_bcu_sense_data.doc [Calibration Function of MRM])
---
  但是 單一量測的 std 與 std 極限值(即 linearity std)間的
    漸近關係 是 我們現在想看看的 可以驗證 我們的量測值
     裡面除了 persistent 的 quantization error
      還是還有其他的 persistent 電路干擾 -- 那就不美了
       (那是無法用 平均 趨近於零的 會一直上下擺盪)

這件事情 我會寫進 nspotr_BCU_sensor_data.doc 中 做為改正
 請你一定要找 立業 跟他講一下 ,
  不知道 他要投稿的論文裡面 有沒有要相對修改的地方

From: "Yuan-Lung,Peng" <943003029a@gmail.com> Sat, 28 May 2011 23:07:52 +0800
Subject: std 畫圖
老師你說的是這個網頁講的嗎??
http://en.wikipedia.org/wiki/Standard_deviation#Relationship_between_standard_deviation_and_mean
--- tly:
你找到的 reference 很棒,
我希望看到的就是 std_mean(N) 與 1/sqrt(N) 的作圖
  註: 網頁裡的 std 用 symbol font 的 s 來表示 (小寫 sigma)
  意義是 "large number theorem": 若 亂數是 independent random
   則 用他們的 N 個數做出來的平均數 mean 的變異量 var(mean)
     與原來亂數的變異量 var(X) 間的關係 會有 1/N 的 關係
若真是如此 則 我們可以很準確的估計 需要多少精度
  就需要作多高倍數的 over sampling 來得到 適當精度的 mean
   做為我們的量測值
現在 需要驗證 我們的原始數據的統計特性 的確 有這種表現
  才能在後續 做這種規劃
--- EO rev 20110529

II.3 TEMP:
The typical calibration curve is shown below. According to TMP36 data sheet (ref: Analog Devices
   TMP35_36_37.pdf), its working range is [-40, +150] deg C. Therefore, the dynamic range of TEMP1 …
   TEMP6 can be calculated as ( [-40, +150] + [-2.22, +2.22] –3.81 -50 ) * (31598/100) = [-30344, +31096].

Note: TMP36 Rout = ( Vout_max=2V / Iout_max=50uA ) = 40K, in direct measurement by a volt
    meter, loading effect by the volt meter must be considered if RV is not larger than 5M.
Note: 2.3.3.2.2.B) Calibration Data and Dynamic Range of Sensor Responses in
    nspotr_BCU_operation_Manual_to_RU.doc (_morphous080413tly429) ,
    nspotr97616\sensrept.m based on sensrep97617*A{4|5|6}T1.txt (nspotrnote97617.txt).
 degC = (T_data/30414)*100 + 50 +[offset for ADC channel A6:4.84 A5:3.41 A4:6.24] +-2.38
Combining offset variations across all sensors:
nspotr_BCU_sensor_data.doc        9                   97c29 tly c31 98112 211 703 99202 03:29@TW 20110505 0529
 T_data = (degC – 50 –4.83 +-(2.38+1.4)) * 304.14 = 304*degc – 16676 +-1150 .
therefore, typically for all TEMP’s data T_data_25degC = –9076 +-1150 .




nspotr_BCU_sensor_data.doc   10          97c29 tly c31 98112 211 703 99202 03:29@TW 20110505 0529
---- double checking is in progress in nspotr_BCU_sensor_data_temp.doc
---- appendix memo
  ?? mismatch between nspotr97616 sensrept.m & 溫循
      071214_BCU_Temperature_Cali\BCU_Temperature_Cali071214.doc 需要討論/解決 詳見
      nspotr_BCU_sensor_data_temp.doc
  ...
  Revising 98107...:
---98112 still undergoing double check ...?
  Ref: nspotr_BCU_sensor_data_temp.doc rev 98207, based on V1.2B sensrep982051723A4T0.txt
       a4t0_205.m
Calibration formula is
   ( data_count + (14760 +-54) ) / (225.0 +- 1.1) => temp_degC +-1.7
Calibration Curve




Note: 比較 溫循得到的公式:
? ADC 數據 = 溫度_deg_C * 15.9 -1006.1 +-17.56 ;
? 似乎 約等於 data 要放大 16 倍 而非 4 倍 => 16*ADC 數據 = 溫度_deg_C * 254 -16098 +-281
?? 有什麼合理的解釋 ? 哪個公式才對?


Note: Alternative calibration curve: {morphous\ | 060401_NSPO_台俄衛星\}之
071214_BCU_Temperature_Cali\BCU_Temperature_Cali071214.doc
 從溫循數據直接得到的 校正線與公式 為
  "data = deg C * 15.9 – 1006 +-17.6"
 (似乎這個公式的 右側 需要 x16 才能近似 從 nspotr97616 的數據得到的公式,
  而不是單純的 shift 2bit x4.)

nspotr_BCU_sensor_data.doc        11                   97c29 tly c31 98112 211 703 99202 03:29@TW 20110505 0529
nspotr_BCU_sensor_data.doc   12   97c29 tly c31 98112 211 703 99202 03:29@TW 20110505 0529

				
DOCUMENT INFO
Shared By:
Categories:
Tags:
Stats:
views:9
posted:11/30/2011
language:English
pages:12