Document Sample
tyson-ref Powered By Docstoc

1. Roswell, B.D.; Gillespie, R.J.; Heard, G.L. Ligand Close-Packing and the
    Lewis Acidity of BF3 and BCl3. Inorg. Chem. 1999, 38, 4659–4662.
2. Brown, H.C.; Schlesinger, H.I.; Cardon, S.Z. Studies in Stereochemistry. I.
    Steric Strains as a Factor in the Relative Stability of Some Coordination
    Compounds of Boron. J. Am. Chem. Soc. 1942, 64, 325–329.
3. Pearson, R.G. Absolute Electronegativity and Hardness: Application to
    Inorganic Chemistry. Inorg. Chem. 1988, 27, 734–740.
4. Jonas, V.; Frenking, G.; Reetz, M.R. Comparative Theoretical Study of
    Lewis Acid-Base Complexes of BH3, BF3, BCl3, AlCl3, and SO2. J. Am.
    Chem. Soc. 1994, 116, 8741–8753.
5. Shibasaki, M.; Kanai, M.; Funabashi, K. Recent progress in asymmetric
    two-center catalysis. Chem. Commun. 2002, 1989–1999.
6. Corey, E.J.; Helal, C.J. Reduction of Carbonyl Compounds with Chiral
    Oxazaborolidine Catalysts: A New Paradigm for Enantioselective
    Catalysis and a Powerful New Synthetic Method. Angew. Chem. Int. Ed.
    1998, 37, 1986–2012.
7. Sigman, M.S.; Jacobsen, E.N. Schiff Base Catalysts for the Asymmetric
    Strecker Reaction Identified and Optimized from Parallel Synthetic
    Libraries. J. Am. Chem. Soc. 1998, 120, 4901–4902.
8. Denmark, S.E.; Chung, W.-J. Lewis Base Activation of Lewis Acids:
    Catalytic, Enantioselective Addition of Glycolate-Derived Silyl Ketene
    Acetals to Aldehydes. J. Org. Chem. 2008, 73, 4582–4595.
9. Hamza, A.; Stirling, A.; Rokob, A.; Papai, I. Mechanism of Hydrogen
    Activation by Frustrated Lewis Pairs: A Molecular Orbital Approach. Int. J.
    Quantum Chem. 2009, 109, 2416–2425.
10. Wittig, G.; Kolb, G. Zur Aufspaltung cyclischer Ather durch Trityl-natriuml
    Triphenylbor und analoge Antagonistenpaare. Chem. Ber. 1960, 93,
11. Tochtermann, W. Structures and Reactions of Organic ate-Complexes.
    Angew. Chem. Int. Ed. 1966, 5, 351–371.
12. Geier, S.J.; Stephan, D.W. Lutidine/B(C6F5)3: At the Boundary of Classical
    and Frustrated Lewis Pair Reactivity. J. Am. Chem. Soc. 2009, 131, 3476–
13. Rokob, T.A.; Hamza, A.; Stirling, A.; Soos, T.; Papai, I. Turning Frustration
    into Bond Activation: A Theoretical Mechanistic Study on Heterolytic
    Hydrogen Splitting by Frustrated Lewis Pairs. Angew. Chem. Int. Ed.
    2008, 47, 2435–2438.
14. Welch, G.C.; San Juan, R.R.; Masueda, J.D.; Stephan, D.W. Reversible,
    Metal-Free Hydrogen Activation. Science, 2006, 314, 1124–1126.
15. Conley, B.L.; Pennington-Boggio, M.K.; Boz, E.; Williams, T.J. Discovery,
    Applications, and Catalytic Mechanisms of Shvo’s Catalyst. Chem. Rev.
    2010, ASAP: Jan 22, 2010.
16. Grimme, S.; Kruse, H.; Goerigk, L.; Erker, G. The Mechanism of
    Dihydrogen Activation by Frustrated Lewis Pairs Revisited. Angew. Chem.
    Int. Ed. 2010, ASAP: Jan 20 2010.
17. Wang. H.; Frolich, R.; Kehr, K.; Erker, G. Heterolytic dihydrogen activation
    with the 1,8-bis(diphenylphosphino)- naphthalene/B(C6F5)3 pair and its
    application for metal-free catalytic hydrogenation of silyl enol ethers.
    Chem. Commun. 2008, 5966–5968.
18. Ulrich, M.; Lough, A.J.; Stephan, D.W. Reversible, Metal-Free, Heterolytic
    Activation of H2 at Room Temperature. J. Am. Chem. Soc. 2009, 131, 52–
19. Sumerin, V.; Schulz, F.; Atsumi, M.; Wang, C.; Nieger, M.; Leskela, M.;
    Repo, T.; Pyykko, P.; Reiger, B. Molecular Tweezers for Hydrogen:
    Synthesis, Characterization, and Reactivity. J. Am. Chem. Soc. 2008, 130,
20. Casey, C.P.; Johnson, J.B. Isomerization and Deuterium Scrambling
    Evidence for a Change in the Rate-Limiting Step during Imine
    Hydrogenation by Shvo’s Hydroxycyclopentadienyl Ruthenium Hydride. J.
    Am. Chem. Soc. 2005, 127, 1883–1894.
21. Jiang, C.; Blacque, O.; Berke, H. Activation of Terminal Alkynes by
    Frustrated Lewis Pairs. Organometallics, 2010, 29, 125–133.
22. Chen, D.; Klankermayer Metal-free catalytic hydrogenation of imines with
    tris(perfluorophenyl)borane. J. Chem. Commun. 2008, 2130–2131.
23. Axenov, K.V.; Kehr, G.; Frolich, R.; Erker, G. Catalytic Hydrogenation of
    Sensitive Organometallic Compounds by Antagonistic N/B Lewis Pair
    Catalyst Systems. J. Am. Chem. Soc. 2009, 131, 3454–3455.
24. Sumerin, V.; Schulz, F.; Nieger, M.; Leskela, M.; Repo, T.; Reiger, B.
    Facile Heterolytic H2 Activation by Amines and B(C6F5)3. Angew. Chem.
    Int. Ed. 2008, 47, 6001–6003.
25. Ashley, A.E.; Thompson, A.L.; O’Hare, D. Non-Metal-Mediated
    Homogeneous Hydrogenation of CO2 to CH3OH. Angew. Chem. Int. Ed.
    2009, 48, 9839–9843.
26. Pandey, K.K. Reactivities of carbonyl sulfide (COS), carbon disulfide (CS,)
    and carbon dioxide (CO2) with transition metal complexes. Coord. Chem.
    Rev. 1995, 140, 37–114.
27. Fu, P.-F.; Khan, M.A.; Nicholas, K.M. Carbon Dioxide Complexes via
    Aerobic Oxidation of Transition Metal Carbonyls. J. Am. Chem. Soc. 1992,
    114, 6579–6580.
28. Allen, D.J.; Green, M.L.H. Reactions of Carbon Dioxide with Electron-rich
    Trimethylphosphine Compounds of Rhenium and Tungsten: Crystal
    Structure of [W(PMe3)4H2(CO3)]. J. Chem. Soc. Dalton Trans. 1990, 541–
29. Menard, G.; Stephan, D.W. Room Temperature Reduction of CO2 to
    Methanol by Al-Based Frustrated Lewis Pairs and Ammonia Borane. J.
    Am. Chem. Soc. 2010, 132, ASAP: Jan 20, 2010.
30. Otten, E.; Neu, R.C.; Stephan. D.W. Complexation of Nitrous Oxide by
    Frustrated Lewis Pairs. J. Am. Chem. Soc. 2009, 131, 9918–9919.
Additional references:

   1. Spies, P.; Schwendemann, S.; Lange, S.; Kehr, G.; Frolich, R.; Erker, G.
       Metal-Free Catalytic Hydrogenation of Enamines, Imines, and Conjugated
       Phosphinoalkenylboranes. Angew. Chem. Int. Ed. 2008, 47, 7543–7546.
   2. Spies, P.; Erker, G.; Kehr, G.; Bergander, K.; Frolich, R.; Grimme, S.;
       Stephan, D.W. Rapid intramolecular heterolytic dihydrogen activation by a
       four- membered heterocyclic phosphane–borane adduct. Chem. Commun.
       2007, 5072–5074.
   3. Chase, P.A.; Jurca, T.; Stephan, D.W. Lewis acid-catalyzed
       hydrogenation: B(C6F5)3-mediated reduction of imines and nitriles with H2.
       Chem. Commun. 2008, 1701–1703.
   4. Jiang, C.; Blacque, O.; Berke, H. Metal-free hydrogen activation and
       hydrogenation of imines by 1,8-bis(dipentafluorophenylboryl)naphthalene.
       Chem. Commun. 2009, 5518–5520.
   5. Geier, S.J.; Gille, A.L.; Gilbert, T.M.; Stephan, D.W. From Classical
       Adducts to Frustrated Lewis Pairs: Steric Effects in the Interactions of
       Pyridines and B(C6F5)3. Inorg. Chem. 2009, 48, 10466–10474.
   6. Lu, G.; Li, H.; Huang, F.; Wang, Z.X. Computationally Designed Metal-
       Free Hydrogen Activation Site: Reaching the Reactivity of Metal-Ligand
       Bifunctional Hydrogenation Catalysts. Inorg. Chem. 2010, 49, 295–301.
   7. Welch, G.C.; Stephan, D.W. Facile Heterolytic Cleavage of Dihydrogen by
       Phosphines and Boranes. J. Am. Chem. Soc. 2007, 129, 1880–1881.
   8. Chase, P.A.; Welch, G.C.; Jurca, T.; Stephan, D.W.; Metal-Free Catalytic
       Hydrogenation. Angew. Chem. Int. Ed. 2007, 46, 8050–8053.
   9. Rokob, T.A.; Hamza, A.; Papai, I. Rationalizing the Reactivity of
       Frustrated Lewis Pairs: Thermodynamics of H2 Activation and the Role of
       Acid-Base Properties. J. Am. Chem. Soc. 2009, 131, 10701–10710.
   10. Momming, C.M.; Fromel, S.; Kehr, G.; Frolich, R.; Grimme, S.; Erker, S.
       Reactions of an Intramolecular Frustrated Lewis Pair with Unsaturated
       Substrates: Evidence for a Concerted Olefin Addition Reaction. J. Am.
       Chem. Soc. 2009, 131, 12280–12289.
   11. Doring, S.; Erker, G.; Frolich, R.; Meyer, O.; Bergander, K. Reaction of
       the Lewis Acid Tris(pentafluorophenyl)borane with a Phosphorus Ylide:
       Competition between Adduct Formation and Electrophilic and Nucleophilic
       Aromatic Substitution Pathways. Organometallics 1998, 17, 2183–2187.

Relevant reviews:

   1. Stephan, D.W.; Erker, G. Frustrated Lewis Pairs: Metal-free Hydrogen
      Activation and More. Angew. Chem. Int. Ed. 2010, 49, 46-76.
   2. Stephan, D.W. Frustrated Lewis pairs: a new strategy to small molecule
      activation and hydrogenation catalysis. J. Chem. Soc. Dalton Trans. 2009,
3. Stephan, D.W. “Frustrated Lewis pairs”: a concept for new reactivity and
   catalysis. Org. Biomol. Chem. 2008, 6, 1535–1539.
4. Sumerin, V.; Schulz, F.; Nieger, M.; Wang, C.; Atsumi, M.; Leskela, M.;
   Pyykko, P.; Repo, T.; Reiger, B. Experimental and theoretical treatment of
   hydrogen splitting and storage in boron–nitrogen systems. J. Organomet.
   Chem. 2009, 694, 2654–2660.
5. Denmark, S.E.; Beutner, G.L. Lewis Base Catalysis in Organic Synthesis.
   Angew. Chem. Int. Ed. 2008, 47, 1560–1638.
6. Paull, D.H.; Abraham, C.J.; Scerba, M.T.; Alden-Danforth, E.; Lectka, T.
   Bifunctional Asymmetric Catalysis: Cooperative Lewis Acid/Base Systems.
   Acc. Chem. Res. 2008, 41, 655–663.

Shared By: