# Con of Linear Momentum Data Sheets

Shared by:
Categories
-
Stats
views:
6
posted:
8/18/2009
language:
English
pages:
4
Document Sample

```							                                                                     Conservation of Linear Momentum

DATA ANALYSIS
Mass Measurements:

M (kg)              uM (kg)          uM/M
Mass 1
Mass 2

Speed Before collision:

v (m/s)         uv (m/s)             uv/v
Mass 1
Mass 2

Angle Before Collision:

θ (deg)         uθ (rad)
Mass 1
Mass 2

Speed After Collision:

v (m/s)         uv (m/s)
Mass 1
Mass 2

Angles After Collision:

θ (deg)         uθ (rad)
Mass 1
Mass 2

Sample Calculation: (Mass 1 before collision)

π
uθ =         uθ (deg) = _______________________________________________
180

65
Department of Physics and Astronomy
Conservation of Linear Momentum

Components of Momentum Before Collision:

Px (kg m/s)          uPx (kg m/s)            Py (kg m/s)   uPy (kg m/s)

Mass 1

Mass 2

System

Components of Momentum After Collision:

Px (kg m/s)          uPx (kg m/s)            Py (kg m/s)   uPy (kg m/s)

Mass 1

Mass 2

System

Sample Calculation: (Px and uPx of Mass 1 before the collision)

Px = mv cos θ = _______________________________________________________

u Px =   (v cos θ ⋅ u m )2 + (m cos θ ⋅ u v )2 + (mv sin θ ⋅ uθ )2
=________________________________________________________________

Sample Calculation: (Px and uPx of the System before the collision)

Px = Px , mass1 + Px , mass 2 = _________________________________________________

u Px = u Px, mass1 + u Px, mass2 = _______________________________________________
2             2

66
University of North Carolina
Conservation of Linear Momentum

Total Momentum of the System:

P (kg m/s)         uP (kg m/s)       θ (deg)        uθ (deg)

BEFORE

AFTER

Sample Calculation: (Before the collision. Note: Px and Py below are Px,system and Py,system)

P = Px2 + Py2 = _______________________________________________________

2                         2
 P  2  Py  2
u P =  x  u Px +   u Py
 P
 P          

= ________________________________________________________________

θ = tan −1 (Py Px ) = _____________________________________________________

2             2
 Py           u Px     u Py   
u  Py          =                      +       
    P            P        P       

      Px 
     x            x        y      

= _____________________________________________________________

−1
 P              
2

u θ = 1 +  Y                  u        (where uθ is in radians)
  PX                     Py P 
                               
  x

=________________________________________________________________

180
convert uθ from rad to deg. : uθ (deg) =                            uθ (rad) = _________________________
π

67
Department of Physics and Astronomy
Conservation of Linear Momentum

Kinetic Energy Before Collision:

K(J )                uK (J )
Mass 1
Mass 2
System

Kinetic Energy After Collision:

K(J )                uK (J )
Mass 1
Mass 2
System

Sample Calculation: (Mass 1 Before Collision)

1
K=      Mv 2 = ______________________________________________________
2

2
 v2      2
uK = 
 2       u m + (Mv ) 2 u v2

        

= ____________________________________________________________

Sample Calculation: (System Before Collision)

K = K mass1 + K mass 2 = _______________________________________________

u k = u K , mass1 + u K , mass 2 = ___________________________________________
2             2

2                    2
 u M , mass1   u v , mass1 
where u K , mass1 = K mass1   
M             + 2
              
       and similarly for Kmass2
 mass1   v mass1 

68
University of North Carolina

```
Related docs