# lec23

```					                          Physics I
Class 23

Magnetic Force
on Moving Charges

Rev. 07-Apr-04 GB
23-1
Hendrick Antoon Lorentz

Hendrick A. Lorentz was a Dutch
physicist who refined certain aspects of
electromagnetic theory. He, along with
Irish mathematical physicist George F.
FitzGerald, deduced fundamental
properties of the electromagnetic
behavior of moving bodies that formed
the basis of Einstein’s Special Theory
of Relativity.
The force of a magnetic field on a
moving charge is sometimes called the
Lorentz Force.
H.A. Lorentz
1853-1928
23-2
and Net Force Vectors (Review)

v                F         Same direction: speeding up.

v                F         Opposite directions: slowing down.

v
Right angles: changing direction, same speed.
F

23-3
Vector Cross Product (Review)

                   
c  a  b ; | c |  | a || b | sin( )
The direction comes from the
right-hand rule. It is at a right

angle to the plane formed by a

and b . In other words, the cross
product is at right angles to both
      
a and b . (3D thinking required!)

23-4
Drawing 3D Vectors in 2D

Y
-Y   +Y

+X                  X
-X         Z
-Z    +Z   +Z is out of page

23-5
Magnetic Force on a
Moving Charge
      
F  q vB
q:
   charge of the particle (C; + or –)
v : velocity of the particle (m/s)

B : magnetic field (T)
 Force is at a right angle to velocity.
 Force is at a right angle to magnetic field.

Important: If q is negative, that reverses the direction of force.

23-6
An Example
An Electron in a Magnetic Field

Y

X
Z

23-7
Analysis of the Magnetic Force
Y

X
Z                                               
F  q vB
We will evaluate this expression before
F                         the electron starts turning.

 
First, evaluate v  B . In this case, they are 90° 
                 apart, so all we
                       
need is the direction. v is +X, B is –Z, so v  B is +Y.
Next, we need to account for q. This is an electron, so q is
negative. Therefore, the magnitude of the force is (e v B) and the
direction is –Y.

23-8
Uniform Circular Motion

As the electron turns, so does the force vector.

 Speed stays constant because acceleration is
always perpendicular to velocity.
 The electron travels in a circle at a constant speed.

23-9
F    v
Although the directions of the vectors are
changing, the magnitudes stay the same.
r
v2
F  ma  m
r
F  qvB
v2
qvB  m
r
v2   mv
rm     
qvB qB

23-10
The Period and Frequency
F   v
The circumference of the circle is 2  r.
Distance 2  r
r       v          
Time     T
mv
2
2r       qB 2m
T             
v      v     qB
1    qB
f 
T 2m
qB
  2f 
m
23-11
Bubble Chamber
The red and green lines in the figure
to the left are tracks of charged
particles in a bubble chamber. Each
charged particle makes a trail of
tiny bubbles as it moves in the
chamber. There is a magnetic field
of 1.0 T directed into the page.
What are the signs of the charges of the particles?
mv
r      Why do they spiral inward?
qB
What are they?
What created them at the points where the tracks start?

23-12
The Aurora

 There is no acceleration in the direction of the
magnetic field line. (Why?)
 The component of velocity in the direction of the
field line remains constant. (Why?)
 The component of velocity at a right angle to the
field line continually changes direction. (Why?)
The result is that the charged particle (electron)
travels in a spiral path along the magnetic field line,
giving off light when it hits the atmosphere.

23-13
The Aurora
As Seen from the Space Shuttle

23-14
The Effect of the Solar Wind
on the Magnetic Field of Earth

Energetic charged particles travel along
magnetic field lines on the sun.
Some escape into interplanetary space.
These are called the solar wind.
The solar wind interacts with the magnetic
field lines of Earth and distorts them. The
complex interaction of flowing charged
particles with the electromagnetic field is
called Magneto-Hydrodynamics or MHD.
23-15
Class #23
Take-Away Concepts
1.   The magnetic (Lorentz) force on a moving, charged particle:
         

F  q vB
2. The magnetic force cannot change a particle’s speed, only the
direction of its velocity.
3. Radius and angular frequency of a charged particle in uniform
circular motion in a magnetic field:
mv
r
qB
qB

m

23-16
Class #23
Problems of the Day
___1. A charged, non-magnetic particle is moving in a uniform
magnetic field. Which of the following conditions (if any)
would cause the particle to speed up?

A) The velocity of the particle is at a right angle to the magnetic
field.
B) The velocity of the particle is in the same direction as the
magnetic field.
C) The velocity of the particle is in the opposite direction as the
magnetic field.
D) Any of the above (A-C) would cause the particle to speed up.
E) None of the above; the magnetic force cannot cause the
particle to speed up.

23-17
Class #23
Problems of the Day
2. An electron is traveling in a vacuum tube at 1.4 x 107 m/s in a
horizontal direction toward the south. There is a constant
magnetic field in the tube with a magnitude of 0.5 gauss. The
direction of the magnetic field is toward the north and 30º down
(toward the ground). What are the magnitude and direction of the
magnetic (Lorentz) force on the electron? (1 T = 10,000 gauss.)
Up

30°
v                S          N
-e
B
Down

23-18
Activity #23
Magnetic Field and Force

Objective of the Activity:

1.   Consider the implications of the magnetic force on speed and
direction of a charged particle.
2.   Determine the direction and magnitude of the magnetic field at
your table in the classroom using a compass, a coil of wire, a
power supply, and a current meter.

23-19

```
DOCUMENT INFO
Shared By:
Categories:
Tags:
Stats:
 views: 0 posted: 10/22/2011 language: English pages: 19